1 - 10 of 47 Questions
# | Question | Ans |
---|---|---|
1. |
Find the value of 1101112 + 101002 A. 11010112 B. 10010012 C. 10010112 D. 10011112 |
|
2. |
A woman bought a grinder for N60,000. She sold it at a loss of 15%. How much did she sell it? A. N53,000 B. N52,000 C. N51,000 D. N50,000 |
|
3. |
Express the product of 0.00043 and 2000 in standard form. A. 8.6 x 10-3 B. 8.3 x 10-2 C. 8.6 x 10-1 D. 8.6 x 10 |
|
4. |
A man donates 10% of his monthly net earnings to his church. If it amounts to N4,500, what is his net monthly income? A. N40,500 B. N45,000 C. N52,500 D. N62,000 |
|
5. |
If log7.5 = 0.8751, evaluate 2 log75 + log750 A. 6.6252 B. 6.6253 C. 66.252 D. 66.253 |
|
6. |
Solve for x in 8x-2 = 2/25 A. 4 B. 6 C. 8 D. 10 |
|
7. |
Simplify \(\frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}\) A. 3\(\sqrt{6} - 7\) B. 3\(\sqrt{6} + 7\) C. 3\(\sqrt{6} - 1\) D. 3\(\sqrt{6} + 1\) Detailed Solution\(= \frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)\(= \frac{2\sqrt{2}(\sqrt{2}) + (2\sqrt{2})(-\sqrt{3})-\sqrt{3}(\sqrt{2})-\sqrt{3}(-\sqrt{3})}{(\sqrt{2})^2-(\sqrt{3})^2}\) \(= \frac{2 \times 2 - 2\sqrt{6} - \sqrt{6} + 3}{2 - 3}\) \(= \frac{4 - 3\sqrt{6} + 3}{-1}\) \(= \frac{7 - 3\sqrt{6}}{-1}\) \(= \frac{7}{-1} - \frac{3\sqrt{6}}{-1}\) \(= -7 + 3\sqrt{6}\) \(= 3\sqrt{6}-7\) There is an explanation video available below. |
|
8. |
Evaluate Log28 + Log216 - Log24 A. 3 B. 4 C. 5 D. 6 |
|
9. |
If P = {1,2,3,4,5} and P \(\cup\) Q = {1,2,3,4,5,6,7}, list the elements in Q A. {6} B. {7} C. {6,7} D. {5,6} |
|
10. |
If gt2 - k - w = 0, make g the subject of the formula A. \(\frac{k + w}{t^2}\) B. \(\frac{k - w}{t^2}\) C. \(\frac{k + w}{t}\) D. \(\frac{k - w}{t}\) |
1. |
Find the value of 1101112 + 101002 A. 11010112 B. 10010012 C. 10010112 D. 10011112 |
|
2. |
A woman bought a grinder for N60,000. She sold it at a loss of 15%. How much did she sell it? A. N53,000 B. N52,000 C. N51,000 D. N50,000 |
|
3. |
Express the product of 0.00043 and 2000 in standard form. A. 8.6 x 10-3 B. 8.3 x 10-2 C. 8.6 x 10-1 D. 8.6 x 10 |
|
4. |
A man donates 10% of his monthly net earnings to his church. If it amounts to N4,500, what is his net monthly income? A. N40,500 B. N45,000 C. N52,500 D. N62,000 |
|
5. |
If log7.5 = 0.8751, evaluate 2 log75 + log750 A. 6.6252 B. 6.6253 C. 66.252 D. 66.253 |
6. |
Solve for x in 8x-2 = 2/25 A. 4 B. 6 C. 8 D. 10 |
|
7. |
Simplify \(\frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}\) A. 3\(\sqrt{6} - 7\) B. 3\(\sqrt{6} + 7\) C. 3\(\sqrt{6} - 1\) D. 3\(\sqrt{6} + 1\) Detailed Solution\(= \frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)\(= \frac{2\sqrt{2}(\sqrt{2}) + (2\sqrt{2})(-\sqrt{3})-\sqrt{3}(\sqrt{2})-\sqrt{3}(-\sqrt{3})}{(\sqrt{2})^2-(\sqrt{3})^2}\) \(= \frac{2 \times 2 - 2\sqrt{6} - \sqrt{6} + 3}{2 - 3}\) \(= \frac{4 - 3\sqrt{6} + 3}{-1}\) \(= \frac{7 - 3\sqrt{6}}{-1}\) \(= \frac{7}{-1} - \frac{3\sqrt{6}}{-1}\) \(= -7 + 3\sqrt{6}\) \(= 3\sqrt{6}-7\) There is an explanation video available below. |
|
8. |
Evaluate Log28 + Log216 - Log24 A. 3 B. 4 C. 5 D. 6 |
|
9. |
If P = {1,2,3,4,5} and P \(\cup\) Q = {1,2,3,4,5,6,7}, list the elements in Q A. {6} B. {7} C. {6,7} D. {5,6} |
|
10. |
If gt2 - k - w = 0, make g the subject of the formula A. \(\frac{k + w}{t^2}\) B. \(\frac{k - w}{t^2}\) C. \(\frac{k + w}{t}\) D. \(\frac{k - w}{t}\) |