31 - 40 of 47 Questions
# | Question | Ans |
---|---|---|
31. |
Find the minimum value of y = x2 - 2x - 3 A. 4 B. 1 C. -1 D. -4 |
|
32. |
Evaluate \(\int \sin 2x dx\) A. cos 2x + k B. \(\frac{1}{2}\)cos 2x + k C. \(-\frac{1}{2}\)cos 2x + k D. -cos 2x + k |
|
33. |
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\) A. \(\frac{1}{12} (2x + 3)^6 + k\) B. \(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\) C. \(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\) D. \(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\) |
|
34. |
The mean of 2 - t, 4 + t, 3 - 2t, 2 + t and t - 1 is A. t B. -t C. 2 D. -2 Detailed SolutionMean x = \(\frac{\sum x}{n}\)= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1)] \(\div\) 5 = [11 - 1 + 3t - 3t] \(\div\) 5 = 10 \(\div\) 5 = 2 There is an explanation video available below. |
|
35. |
\(\begin{array}{c|c} A. 1 B. 2 C. 3 D. 4 Detailed SolutionThe number with the highest frequency = 4There is an explanation video available below. |
|
36. |
Find the median of 5,9,1,10,3,8,9,2,4,5,5,5,7,3 and 6 A. 6 B. 5 C. 4 D. 3 |
|
37. |
Find the standard deviation of 5, 4, 3, 2, 1 A. \(\sqrt{2}\) B. \(\sqrt{3}\) C. \(\sqrt{6}\) D. \(\sqrt{10}\) |
|
38. |
In how many ways can a team of 3 girls be selected from 7 girls? A. \(\frac{7!}{3!}\) B. \(\frac{7!}{4!}\) C. \(\frac{7!}{3!4!}\) D. \(\frac{7!}{2!5!}\) |
|
39. |
\(\begin{array}{c|c} A. \(\frac{1}{5}\) B. \(\frac{1}{2}\) C. \(\frac{2}{5}\) D. \(\frac{3}{4}\) |
|
40. |
A number is chosen at random from 10 to 30 both inclusive. What is the probability that the number is divisible by 3? A. \(\frac{2}{15}\) B. \(\frac{1}{10}\) C. \(\frac{1}{3}\) D. \(\frac{2}{5}\) Detailed SolutionSample space S = {10, 11, 12, ... 30}Let E denote the event of choosing a number divisible by 3 Then E = {12, 15, 18, 21, 24, 27, 30} and n(E) = 7 Prob (E) = \(\frac{n(E)}{n(S)}\) Prob (E) = \(\frac{7}{21}\) Prob (E) = \(\frac{1}{3}\) There is an explanation video available below. |
31. |
Find the minimum value of y = x2 - 2x - 3 A. 4 B. 1 C. -1 D. -4 |
|
32. |
Evaluate \(\int \sin 2x dx\) A. cos 2x + k B. \(\frac{1}{2}\)cos 2x + k C. \(-\frac{1}{2}\)cos 2x + k D. -cos 2x + k |
|
33. |
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\) A. \(\frac{1}{12} (2x + 3)^6 + k\) B. \(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\) C. \(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\) D. \(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\) |
|
34. |
The mean of 2 - t, 4 + t, 3 - 2t, 2 + t and t - 1 is A. t B. -t C. 2 D. -2 Detailed SolutionMean x = \(\frac{\sum x}{n}\)= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1)] \(\div\) 5 = [11 - 1 + 3t - 3t] \(\div\) 5 = 10 \(\div\) 5 = 2 There is an explanation video available below. |
|
35. |
\(\begin{array}{c|c} A. 1 B. 2 C. 3 D. 4 Detailed SolutionThe number with the highest frequency = 4There is an explanation video available below. |
36. |
Find the median of 5,9,1,10,3,8,9,2,4,5,5,5,7,3 and 6 A. 6 B. 5 C. 4 D. 3 |
|
37. |
Find the standard deviation of 5, 4, 3, 2, 1 A. \(\sqrt{2}\) B. \(\sqrt{3}\) C. \(\sqrt{6}\) D. \(\sqrt{10}\) |
|
38. |
In how many ways can a team of 3 girls be selected from 7 girls? A. \(\frac{7!}{3!}\) B. \(\frac{7!}{4!}\) C. \(\frac{7!}{3!4!}\) D. \(\frac{7!}{2!5!}\) |
|
39. |
\(\begin{array}{c|c} A. \(\frac{1}{5}\) B. \(\frac{1}{2}\) C. \(\frac{2}{5}\) D. \(\frac{3}{4}\) |
|
40. |
A number is chosen at random from 10 to 30 both inclusive. What is the probability that the number is divisible by 3? A. \(\frac{2}{15}\) B. \(\frac{1}{10}\) C. \(\frac{1}{3}\) D. \(\frac{2}{5}\) Detailed SolutionSample space S = {10, 11, 12, ... 30}Let E denote the event of choosing a number divisible by 3 Then E = {12, 15, 18, 21, 24, 27, 30} and n(E) = 7 Prob (E) = \(\frac{n(E)}{n(S)}\) Prob (E) = \(\frac{7}{21}\) Prob (E) = \(\frac{1}{3}\) There is an explanation video available below. |