11 - 20 of 48 Questions
# | Question | Ans |
---|---|---|
11. |
Find the remainder when 2x3 - 11x2 + 8x - 1 is divided by x + 3 A. -871 B. -781 C. -187 D. -178 |
|
12. |
Solve for x and y in the equations below A. x = 0, y = -2 B. x = 0, y = 2 C. x = 2, y = 0 D. x = -2, y = 0 |
|
13. |
If y varies directly as \(\sqrt{n}\) and y = 4 when n = 4, find y when n = 1\(\frac{7}{9}\) A. \(\sqrt{17}\) B. \(\frac{4}{3}\) C. \(\frac{8}{3}\) D. \(\frac{2}{3}\) Detailed Solutiony \(\propto \sqrt{n}\)y = k\(\sqrt{n}\) when y = 4, n = 4 4 = k\(\sqrt{4}\) 4 = 2k k = 2 Therefore, y = 2\(\sqrt{n}\) y = 2\(\sqrt{\frac{16}{9}}\) y = 2\((\frac{4}{3})\) y = \(\frac{8}{3}\) There is an explanation video available below. |
|
14. |
U is inversely proportional to the cube of V and U = 81 when V = 2. Find U when V = 3 A. 24 B. 27 C. 32 D. 36 Detailed SolutionU \(\propto \frac{1}{V^3}\)U = \(\frac{k}{V^3}\) k = UV\(^3\) k = 81 x 2\(^3\) = 81 x 8 When V = 3, U = \(\frac{k}{V^3}\) U = \(\frac{81 \times 8}{3^3}\) U = \(\frac{81 \times 8}{27}\) = 24 There is an explanation video available below. |
|
15. |
The value of y for which \(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\) is A. \(y > \frac{2}{3}\) B. \(y < \frac{2}{3}\) C. \(y > -\frac{2}{3}\) D. \(y < -\frac{2}{3}\) |
|
16. |
Find the range of values of m which satisfy (m - 3)(m - 4) < 0 A. 2 < m < 5 B. -3 < m < 4 C. 3 < m < 4 D. -4 < m < 3 |
|
17. |
The nth term of a sequence is n2 - 6n - 4. Find the sum of the 3rd and 4th terms. A. 24 B. 23 C. -24 D. -25 |
|
18. |
The sum to infinity of a geometric progression is \(-\frac{1}{10}\) and the first term is \(-\frac{1}{8}\). Find the common ratio of the progression. A. \(-\frac{1}{5}\) B. \(-\frac{1}{4}\) C. \(-\frac{1}{3}\) D. \(-\frac{1}{2}\) |
|
19. |
The binary operation * is defined on the set of integers such that p * q = pq + p - q. Find 2 * (3 * 4) A. 11 B. 13 C. 15 D. 22 |
|
20. |
The binary operation on the set of real numbers is defined by m*n = \(\frac{mn}{2}\) for all m, n \(\in\) R. If the identity element is 2, find the inverse of -5 A. \(-\frac{4}{5}\) B. \(-\frac{2}{5}\) C. 4 D. 5 Detailed Solutionm * n = \(\frac{mn}{2}\)Identify, e = 2 Let a \(\in\) R, then a * a\(^{-1}\) = e a * a\(^{-1}\) = 2 -5 * a\(^{-1}\) = 2 \(\frac{-5 \times a^{-1}}{2} = 2\) \(a^{-1} = \frac{2 \times 2}{-5}\) \(a^{-1} = -\frac{4}{5}\) There is an explanation video available below. |
11. |
Find the remainder when 2x3 - 11x2 + 8x - 1 is divided by x + 3 A. -871 B. -781 C. -187 D. -178 |
|
12. |
Solve for x and y in the equations below A. x = 0, y = -2 B. x = 0, y = 2 C. x = 2, y = 0 D. x = -2, y = 0 |
|
13. |
If y varies directly as \(\sqrt{n}\) and y = 4 when n = 4, find y when n = 1\(\frac{7}{9}\) A. \(\sqrt{17}\) B. \(\frac{4}{3}\) C. \(\frac{8}{3}\) D. \(\frac{2}{3}\) Detailed Solutiony \(\propto \sqrt{n}\)y = k\(\sqrt{n}\) when y = 4, n = 4 4 = k\(\sqrt{4}\) 4 = 2k k = 2 Therefore, y = 2\(\sqrt{n}\) y = 2\(\sqrt{\frac{16}{9}}\) y = 2\((\frac{4}{3})\) y = \(\frac{8}{3}\) There is an explanation video available below. |
|
14. |
U is inversely proportional to the cube of V and U = 81 when V = 2. Find U when V = 3 A. 24 B. 27 C. 32 D. 36 Detailed SolutionU \(\propto \frac{1}{V^3}\)U = \(\frac{k}{V^3}\) k = UV\(^3\) k = 81 x 2\(^3\) = 81 x 8 When V = 3, U = \(\frac{k}{V^3}\) U = \(\frac{81 \times 8}{3^3}\) U = \(\frac{81 \times 8}{27}\) = 24 There is an explanation video available below. |
|
15. |
The value of y for which \(\frac{1}{5}y + \frac{1}{5} < \frac{1}{2}y + \frac{2}{5}\) is A. \(y > \frac{2}{3}\) B. \(y < \frac{2}{3}\) C. \(y > -\frac{2}{3}\) D. \(y < -\frac{2}{3}\) |
16. |
Find the range of values of m which satisfy (m - 3)(m - 4) < 0 A. 2 < m < 5 B. -3 < m < 4 C. 3 < m < 4 D. -4 < m < 3 |
|
17. |
The nth term of a sequence is n2 - 6n - 4. Find the sum of the 3rd and 4th terms. A. 24 B. 23 C. -24 D. -25 |
|
18. |
The sum to infinity of a geometric progression is \(-\frac{1}{10}\) and the first term is \(-\frac{1}{8}\). Find the common ratio of the progression. A. \(-\frac{1}{5}\) B. \(-\frac{1}{4}\) C. \(-\frac{1}{3}\) D. \(-\frac{1}{2}\) |
|
19. |
The binary operation * is defined on the set of integers such that p * q = pq + p - q. Find 2 * (3 * 4) A. 11 B. 13 C. 15 D. 22 |
|
20. |
The binary operation on the set of real numbers is defined by m*n = \(\frac{mn}{2}\) for all m, n \(\in\) R. If the identity element is 2, find the inverse of -5 A. \(-\frac{4}{5}\) B. \(-\frac{2}{5}\) C. 4 D. 5 Detailed Solutionm * n = \(\frac{mn}{2}\)Identify, e = 2 Let a \(\in\) R, then a * a\(^{-1}\) = e a * a\(^{-1}\) = 2 -5 * a\(^{-1}\) = 2 \(\frac{-5 \times a^{-1}}{2} = 2\) \(a^{-1} = \frac{2 \times 2}{-5}\) \(a^{-1} = -\frac{4}{5}\) There is an explanation video available below. |