41 - 50 of 50 Questions
# | Question | Ans |
---|---|---|
41. |
The diagram shows a trapezium inscribed in a semi-circle. If O is the mid-point of WZ and |WX| = |XY| = |YZ|, calculate the value of m A. 90\(^o\) B. 60\(^o\) C. 45\(^o\) D. 30\(^o\) Detailed SolutionIn the diagram, < WOZ = 180\(^o\) (angle on a straight line)< WOX = < XOY = < YOZ (|WX| = |XY| = |YZ|) \(\frac{180^o}{3}\) = 60\(^o\) = 60\(^o\) M + m =2m (base angles of isosceles \(\bigtriangleup\), |OY| and |OZ| are radii) < YOZ + 2m (base angles of a \(\bigtriangleup\)) 60\(^o\) + 2m = 180\(^o\) (sum of a \(\bigtriangleup\)) 60\(^o\) + 2m = 180\(^o\) 2m = 180\(^o\) - 60\(^o\) 2m = 120\(^o\) m = \(\frac{120^o}{2}\) = 60\(^o\) |
|
42. |
In the diagram, PQ//RS. Find x in terms of y and z A. x = 240\(^o\) - y - z B. x = 180\(^o\) - y - z C. x = 360\(^o\) + y -z D. x = 360\(^o\) - y - z Detailed SolutionIn the diagram,a = z (alternate angles) b = 180\(^o\) - a (angles on a straight line) b = 180\(^o\) - z c = 180\(^o\) - x (angles on a straight line) y = b + c (sum of oposite interior angles) y = 180\(^o\) - z + 180\(^o\) - x y = 360\(^o\) - z - x x = 360\(^o\) - y - z |
|
43. |
In the diagram, PQ is a straight line, (m + n) = 110\(^o\) and (n + r) = 130\(^o\) and (m + r) = 120\(^o\). Find the ratio of m : n : r A. 2 : 3 : 4 B. 3 : 4 : 5 C. 4 : 5 : 6 D. 5 : 6 : 7 Detailed Solutionm + n = 110\(^o\), (n + r) = 130\(^o\)(m + n) = 120\(^o\) then, r = 130\(^o\) - n and; m + (130^o - n) = 120\(^o\) m - n = -10\(^o\) 2m + (n + r) = 110 + 120 = 230 2m + 130 = 230 2m = 230 - 130 m = \(\frac{100}{2}\) = 50\(^o\) n = 110\(^o\) - 50\(^o\) = 60\(^o\) r = 130\(^o\) - 60\(^o\) = 70\(^o\) Hence, the ratio m : n : r = 50 : 60 : 70 = 5 : 6 : 7 |
|
44. |
Donations during the launching of a church project were sent in sealed envolopes. The table shows the distribution of the amount of money in the envelope. How much was the donation? A. N26,792.00 B. N26,972.00 C. N62.792.00 D. N62,972.00 Detailed SolutionTotal donation = 4 x 500 + 7 x 2000 + 20 x 1000 + 9 x 700 + 4 x 500 + 5 x 100 + 3 x 50 + 1 x 2 + 2 x 10= 20000 + 14000 + 20000 + 6300 + 2000 + 500 + 150 + 2 + 20 = N62,972 |
|
45. |
A piece of thread of length 21.4cm is used to form a sector of a circle of radius 4.2cm on a piece of cloth. Calculate, correct to the nearest degree, the angle of the sector. [Take \(\pi = \frac{22}{7}\)] A. 170\(^o\) B. 192\(^o\) C. 177\(^o\) D. 182\(^o\) Detailed SolutionLength of arc, L = 21.4 - 2 x 4.2cm= 21.4 - 8.4 = 13cm But L = \(\frac{\theta}{360^o}\) x 2\(\pi r\) i.e 13 = \(\frac{\theta}{360^o}\) x 2 x \(\frac{22}{7}\) x 4.2 = 13 x 360\(^o\) x 7 = \(\theta\) x 2 x 22 x 4.2 \(\theta\) = \(\frac{13 \times 360^o \times 7}{44 \times 4.2}\) = \(\approx\) 177.27\(^o\) \(\approx\) 177\(^o\) (to the nearest degree) |
|
46. |
If tan x = \(\frac{4}{3}\), 0\(^o\) < x < 90\(^o\), find the value of sin x - cos x A. \(\frac{1}{10}\) B. \(\frac{1}{5}\) C. \(\frac{5}{12}\) D. 1\(\frac{2}{5}\) Detailed SolutionFrom the diagram,h\(^2\) = 4\(^2\) + 3\(^2\) (pythagoras') h\(^2\) = 16 + 9 = 25 h = \(\sqrt{25}\) = 5 Hence, sin x - cos x = \(\frac{4}{5} - \frac{3}{5}\) = \(\frac{2}{5}\) |
|
47. |
Given that Y is 20cm on a bearing of 300\(^o\) from x, how far south of y is x? A. 10cm B. 15cm C. 25cm D. 30cm Detailed SolutionIn \(\bigtriangleup\)YSC, sin 30\(^o\) = \(\frac{YS}{20}\)|YS| = 20 sin 30\(^o\) = 20 x 0.5 10m |
|
48. |
The diagonals of a rhombus WXYZ intersect at M. If |MW| = 5cm and |MX| = 12cm, calculate its perimeter A. 42cm B. 48cm C. 52cm D. 60cm Detailed SolutionLet the length of a side of the rhombus be nThen, n\(^2\) = 5\(^2\) + 12\(^2\) = 25 + 144 = 169 n = \(\sqrt{169}\) = 13cm Hence, perimeter of rhombus = 4n = 4 x 13 = 52cm |
|
49. |
M and N are two subsets of the universal set (U). If n(U) = 48, n(M) = 20, n(N) = 30 and n(MUN) = 40, find n(M \(\cap\) N) A. 18 B. 20 C. 30 D. 38 Detailed SolutionLet n(M \(\cup\) N \) = xThen 20 - x + x + 30 - x = n(M \(\cup\) N) 50 - x = 40 50 - 40 = x 10 = x x = 10 Hence, n(M \(\cup\N)' = 8 + (20 - 10) + (30 + 10) = 8 + 10 + 20 = 38 |
|
50. |
The graph of y = x\(^2\) and y = x intersect at which of these points? A. (0,0), (1,1) B. (0,0), (0,1) C. (1, 0), (0, 0) D. (0, 0) (0, 0) Detailed Solutiony = x\(^2\) ....(1)y = x ......(2) y = y x\(^2\) - x x\(^2\) - x = 0 x(x - 1) = 0 x = 0 or x - 1 = 0 x = 0 or x = 1 when x = 0, y = 0\(^2\) = 0 when x = 1, y = 1\(^2\) = 1 Hence; the two graphs interest at (0, 0) and (1, 1) |
41. |
The diagram shows a trapezium inscribed in a semi-circle. If O is the mid-point of WZ and |WX| = |XY| = |YZ|, calculate the value of m A. 90\(^o\) B. 60\(^o\) C. 45\(^o\) D. 30\(^o\) Detailed SolutionIn the diagram, < WOZ = 180\(^o\) (angle on a straight line)< WOX = < XOY = < YOZ (|WX| = |XY| = |YZ|) \(\frac{180^o}{3}\) = 60\(^o\) = 60\(^o\) M + m =2m (base angles of isosceles \(\bigtriangleup\), |OY| and |OZ| are radii) < YOZ + 2m (base angles of a \(\bigtriangleup\)) 60\(^o\) + 2m = 180\(^o\) (sum of a \(\bigtriangleup\)) 60\(^o\) + 2m = 180\(^o\) 2m = 180\(^o\) - 60\(^o\) 2m = 120\(^o\) m = \(\frac{120^o}{2}\) = 60\(^o\) |
|
42. |
In the diagram, PQ//RS. Find x in terms of y and z A. x = 240\(^o\) - y - z B. x = 180\(^o\) - y - z C. x = 360\(^o\) + y -z D. x = 360\(^o\) - y - z Detailed SolutionIn the diagram,a = z (alternate angles) b = 180\(^o\) - a (angles on a straight line) b = 180\(^o\) - z c = 180\(^o\) - x (angles on a straight line) y = b + c (sum of oposite interior angles) y = 180\(^o\) - z + 180\(^o\) - x y = 360\(^o\) - z - x x = 360\(^o\) - y - z |
|
43. |
In the diagram, PQ is a straight line, (m + n) = 110\(^o\) and (n + r) = 130\(^o\) and (m + r) = 120\(^o\). Find the ratio of m : n : r A. 2 : 3 : 4 B. 3 : 4 : 5 C. 4 : 5 : 6 D. 5 : 6 : 7 Detailed Solutionm + n = 110\(^o\), (n + r) = 130\(^o\)(m + n) = 120\(^o\) then, r = 130\(^o\) - n and; m + (130^o - n) = 120\(^o\) m - n = -10\(^o\) 2m + (n + r) = 110 + 120 = 230 2m + 130 = 230 2m = 230 - 130 m = \(\frac{100}{2}\) = 50\(^o\) n = 110\(^o\) - 50\(^o\) = 60\(^o\) r = 130\(^o\) - 60\(^o\) = 70\(^o\) Hence, the ratio m : n : r = 50 : 60 : 70 = 5 : 6 : 7 |
|
44. |
Donations during the launching of a church project were sent in sealed envolopes. The table shows the distribution of the amount of money in the envelope. How much was the donation? A. N26,792.00 B. N26,972.00 C. N62.792.00 D. N62,972.00 Detailed SolutionTotal donation = 4 x 500 + 7 x 2000 + 20 x 1000 + 9 x 700 + 4 x 500 + 5 x 100 + 3 x 50 + 1 x 2 + 2 x 10= 20000 + 14000 + 20000 + 6300 + 2000 + 500 + 150 + 2 + 20 = N62,972 |
|
45. |
A piece of thread of length 21.4cm is used to form a sector of a circle of radius 4.2cm on a piece of cloth. Calculate, correct to the nearest degree, the angle of the sector. [Take \(\pi = \frac{22}{7}\)] A. 170\(^o\) B. 192\(^o\) C. 177\(^o\) D. 182\(^o\) Detailed SolutionLength of arc, L = 21.4 - 2 x 4.2cm= 21.4 - 8.4 = 13cm But L = \(\frac{\theta}{360^o}\) x 2\(\pi r\) i.e 13 = \(\frac{\theta}{360^o}\) x 2 x \(\frac{22}{7}\) x 4.2 = 13 x 360\(^o\) x 7 = \(\theta\) x 2 x 22 x 4.2 \(\theta\) = \(\frac{13 \times 360^o \times 7}{44 \times 4.2}\) = \(\approx\) 177.27\(^o\) \(\approx\) 177\(^o\) (to the nearest degree) |
46. |
If tan x = \(\frac{4}{3}\), 0\(^o\) < x < 90\(^o\), find the value of sin x - cos x A. \(\frac{1}{10}\) B. \(\frac{1}{5}\) C. \(\frac{5}{12}\) D. 1\(\frac{2}{5}\) Detailed SolutionFrom the diagram,h\(^2\) = 4\(^2\) + 3\(^2\) (pythagoras') h\(^2\) = 16 + 9 = 25 h = \(\sqrt{25}\) = 5 Hence, sin x - cos x = \(\frac{4}{5} - \frac{3}{5}\) = \(\frac{2}{5}\) |
|
47. |
Given that Y is 20cm on a bearing of 300\(^o\) from x, how far south of y is x? A. 10cm B. 15cm C. 25cm D. 30cm Detailed SolutionIn \(\bigtriangleup\)YSC, sin 30\(^o\) = \(\frac{YS}{20}\)|YS| = 20 sin 30\(^o\) = 20 x 0.5 10m |
|
48. |
The diagonals of a rhombus WXYZ intersect at M. If |MW| = 5cm and |MX| = 12cm, calculate its perimeter A. 42cm B. 48cm C. 52cm D. 60cm Detailed SolutionLet the length of a side of the rhombus be nThen, n\(^2\) = 5\(^2\) + 12\(^2\) = 25 + 144 = 169 n = \(\sqrt{169}\) = 13cm Hence, perimeter of rhombus = 4n = 4 x 13 = 52cm |
|
49. |
M and N are two subsets of the universal set (U). If n(U) = 48, n(M) = 20, n(N) = 30 and n(MUN) = 40, find n(M \(\cap\) N) A. 18 B. 20 C. 30 D. 38 Detailed SolutionLet n(M \(\cup\) N \) = xThen 20 - x + x + 30 - x = n(M \(\cup\) N) 50 - x = 40 50 - 40 = x 10 = x x = 10 Hence, n(M \(\cup\N)' = 8 + (20 - 10) + (30 + 10) = 8 + 10 + 20 = 38 |
|
50. |
The graph of y = x\(^2\) and y = x intersect at which of these points? A. (0,0), (1,1) B. (0,0), (0,1) C. (1, 0), (0, 0) D. (0, 0) (0, 0) Detailed Solutiony = x\(^2\) ....(1)y = x ......(2) y = y x\(^2\) - x x\(^2\) - x = 0 x(x - 1) = 0 x = 0 or x - 1 = 0 x = 0 or x = 1 when x = 0, y = 0\(^2\) = 0 when x = 1, y = 1\(^2\) = 1 Hence; the two graphs interest at (0, 0) and (1, 1) |