Year : 
2018
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

21 - 30 of 50 Questions

# Question Ans
21.

The total surface area of a hemispher is 75\(\pi cm^2\). Find the radius.

A. 5.0 cm

B. 7.0 cm

C. 8.5 cm

D. 12.0 cm

Detailed Solution

Total surface area of hemisphere is
3\(\pi r^2\) = 75\(\pi cm^2\)
\(r^2\) = \(\frac{75 \pi}{3 \pi}\)
\(r^2\) = 25
r = \(\sqrt{25}\)
r = 5cm
22.

Find the value of x for which \(\frac{x - 5}{x(x - 1)}\) is defined

A. 0 or 5

B. -5 or 5

C. -11 or 5

D. 0 or 1

Detailed Solution

The expression \(\frac{x - 5}{x(x - 1)}\) is defined whten
x(x - 5) = 0.38
either x = 0 or x - 5 = 0
Hence, x = 0 or x = 5
23.

Solved the equation \(2x^2 - x - 6\) = 0

A. x = \(\frac{-3}{2}\) or 2

B. x = -2 or \(\frac{3}{2}\)

C. x = -3 or 2

D. x = 3 or -2

Detailed Solution


\(2x^2 - x - 6\) = 0
\(2x^2 - 4x + 3x - 6\) = 0
2x(x - 2) + 3(x - 2) = 0
(2x + 3) (x - 2) = 0
Either; 2x + 3 = 0 or x - 2 = 0
x = \(\frac{-3}{2}\) or x = 2
24.

Factorise completely the expression\((x + 2)^2\) - \((2x + 1)^2\)

A. (3x + 2)(1 - x)

B. (3x + 2)(2x + 1)

C. 3\((x + 2)^2\)

D. 3(x + 1)(1 - x)

Detailed Solution

\((x + 2)^2\) - \((2x + 1)^2\)
= \((x^2 + 4x + 4) - (4x^2 + 4x + 1)\)
= \(x^2 \) + 4x + 4 - 4 \(x^2 \) - 4x - 1
= -3 \(x^2 \) + 3
= 3 - 3 \(x^2 \)
= 3(1 - \(x^2 \))
= 3(1 + x)(1 - x)


25.

Find the \(n^{th}\) term of the sequence 2 x 3, 4 x 6, 8 x 9, 16 x 12...

A. 2\(^n\) x 3(n + 1)

B. 2\(^n\) x 3n

C. 2\(^n\) x 3\(^n\)

D. 2\(^n\) x 3\(^n - 1\)

Detailed Solution

2 x 3, 4 x 6, 8 x 9, 16 x 12,...
2\(^1\) x 3 x 1, 2\(^2\) x 3 x 2, 2\(^3\) x 3 x 3, 2\(^4\) x 3 x 4,.... 2\(^n\) x 3n
26.

If 3x\(^o\) 4(mod 5), find the least value of x

A. 1

B. 2

C. 3

D. 4

Detailed Solution

3x \(\equiv\) 4(mod 5)
In modulo 5, multiples of 5 that give solution to the given equation are 5, 20, 35, 50,... but 5 will yield the leaast value of x.
Thus; 3x = 4 + 5 = 9
x = \(\frac{9}{3}\)
x = 3

27.

Find the inter-quartile range of 1, 3, 4, 5, 8, 9, 10, 11, 12, 14, 16

A. 6

B. 7

C. 8

D. 9

Detailed Solution

\(Q_1 = \frac{1}{4}\) (N + 1)th
\(\frac{1}{4} \times 12^{th}\) no.
= 3rd no (\(\cong\) 4)
\(Q_3 = \frac{3}{4}\) (N + 1)th
= \(\frac{3}{4}\) x 12th no.
= 9th no. (\(\cong\) 12)
Hence, interquartile range
= \(Q_3 - Q_1\)
= 12 - 4
= 8

28.

If x : y = \(\frac{1}{4} : \frac{3}{8}\) and y : z = \(\frac{1}{3} : \frac{4}{9}\), find x : z

A. 2:3

B. 3:4

C. 3:8

D. 1:2

Detailed Solution

\(\frac{x}{y}\) = \(\frac{1}{4} \div \frac{3}{8}\) = \(\frac{1}{4} \times \frac{8}{3}\) = \(\frac{2}{3}\)
\(\frac{y}{z}\) = \(\frac{1}{3} \div \frac{4}{9}\) = \(\frac{1}{3} \times \frac{9}{4}\) = \(\frac{3}{4}\)
But,
x = \(\frac{2}{5}T_1\), y = \(\frac{3}{5}T_1\)
y = \(\frac{3}{7}T_2\), z = \(\frac{4}{7}T_2\)
Using y = y
\(\frac{3}{5}T_1\) = x = \(\frac{3}{7}T_2\)
\(\frac{T_1}{T_2}\) = \(\frac{3}{7}\) x \(\frac{5}{3}\) = \(\frac{15}{21}\)
\(T_1 = 15\) and \(T_2 = 21\)
Thus , x = \(\frac{2}{5}\) x 15 = 6
y = \(\frac{3}{5}\) x 15 = 9
y = \(\frac{3}{7}\) x 21 = 9
z = \(\frac{4}{7}\) x 21 = 12
Hence; x : z = 6 : 12
= 1
29.

Expression 0.612 in the form \(\frac{x}{y}\), where x and y are integers and y \(\neq\) 0

A. \(\frac{153}{250}\)

B. \(\frac{68}{111}\)

C. \(\frac{61}{100}\)

D. \(\frac{21}{33}\)

Detailed Solution

0.612 = \(\frac{0.612}{1}\) x \(\frac{1000}{1000}\)
= \(\frac{612}{1000}\)
= \(\frac{153}{250}\)
30.

The angle of elevation of the top of a tree from a point 27m away and on the same horizontal ground as the foot of the tree is 30\(^o\). Find the height of the tree.

A. 27m

B. 13.5 \(\sqrt{3m}\)

C. 13.5 \(\sqrt{2m}\)

D. 9\(\sqrt{3m}\)

Detailed Solution

From the diagram,
tan 30\(^o\) = \(\frac{h}{27}\)
h = 27 tan 30\(^o\)
= 27 x \(\frac{1}{\sqrt{3}}\)
= \(\frac{27}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{27 \sqrt{3}}{3}\)
= 9\(\sqrt{3m}\)
21.

The total surface area of a hemispher is 75\(\pi cm^2\). Find the radius.

A. 5.0 cm

B. 7.0 cm

C. 8.5 cm

D. 12.0 cm

Detailed Solution

Total surface area of hemisphere is
3\(\pi r^2\) = 75\(\pi cm^2\)
\(r^2\) = \(\frac{75 \pi}{3 \pi}\)
\(r^2\) = 25
r = \(\sqrt{25}\)
r = 5cm
22.

Find the value of x for which \(\frac{x - 5}{x(x - 1)}\) is defined

A. 0 or 5

B. -5 or 5

C. -11 or 5

D. 0 or 1

Detailed Solution

The expression \(\frac{x - 5}{x(x - 1)}\) is defined whten
x(x - 5) = 0.38
either x = 0 or x - 5 = 0
Hence, x = 0 or x = 5
23.

Solved the equation \(2x^2 - x - 6\) = 0

A. x = \(\frac{-3}{2}\) or 2

B. x = -2 or \(\frac{3}{2}\)

C. x = -3 or 2

D. x = 3 or -2

Detailed Solution


\(2x^2 - x - 6\) = 0
\(2x^2 - 4x + 3x - 6\) = 0
2x(x - 2) + 3(x - 2) = 0
(2x + 3) (x - 2) = 0
Either; 2x + 3 = 0 or x - 2 = 0
x = \(\frac{-3}{2}\) or x = 2
24.

Factorise completely the expression\((x + 2)^2\) - \((2x + 1)^2\)

A. (3x + 2)(1 - x)

B. (3x + 2)(2x + 1)

C. 3\((x + 2)^2\)

D. 3(x + 1)(1 - x)

Detailed Solution

\((x + 2)^2\) - \((2x + 1)^2\)
= \((x^2 + 4x + 4) - (4x^2 + 4x + 1)\)
= \(x^2 \) + 4x + 4 - 4 \(x^2 \) - 4x - 1
= -3 \(x^2 \) + 3
= 3 - 3 \(x^2 \)
= 3(1 - \(x^2 \))
= 3(1 + x)(1 - x)


25.

Find the \(n^{th}\) term of the sequence 2 x 3, 4 x 6, 8 x 9, 16 x 12...

A. 2\(^n\) x 3(n + 1)

B. 2\(^n\) x 3n

C. 2\(^n\) x 3\(^n\)

D. 2\(^n\) x 3\(^n - 1\)

Detailed Solution

2 x 3, 4 x 6, 8 x 9, 16 x 12,...
2\(^1\) x 3 x 1, 2\(^2\) x 3 x 2, 2\(^3\) x 3 x 3, 2\(^4\) x 3 x 4,.... 2\(^n\) x 3n
26.

If 3x\(^o\) 4(mod 5), find the least value of x

A. 1

B. 2

C. 3

D. 4

Detailed Solution

3x \(\equiv\) 4(mod 5)
In modulo 5, multiples of 5 that give solution to the given equation are 5, 20, 35, 50,... but 5 will yield the leaast value of x.
Thus; 3x = 4 + 5 = 9
x = \(\frac{9}{3}\)
x = 3

27.

Find the inter-quartile range of 1, 3, 4, 5, 8, 9, 10, 11, 12, 14, 16

A. 6

B. 7

C. 8

D. 9

Detailed Solution

\(Q_1 = \frac{1}{4}\) (N + 1)th
\(\frac{1}{4} \times 12^{th}\) no.
= 3rd no (\(\cong\) 4)
\(Q_3 = \frac{3}{4}\) (N + 1)th
= \(\frac{3}{4}\) x 12th no.
= 9th no. (\(\cong\) 12)
Hence, interquartile range
= \(Q_3 - Q_1\)
= 12 - 4
= 8

28.

If x : y = \(\frac{1}{4} : \frac{3}{8}\) and y : z = \(\frac{1}{3} : \frac{4}{9}\), find x : z

A. 2:3

B. 3:4

C. 3:8

D. 1:2

Detailed Solution

\(\frac{x}{y}\) = \(\frac{1}{4} \div \frac{3}{8}\) = \(\frac{1}{4} \times \frac{8}{3}\) = \(\frac{2}{3}\)
\(\frac{y}{z}\) = \(\frac{1}{3} \div \frac{4}{9}\) = \(\frac{1}{3} \times \frac{9}{4}\) = \(\frac{3}{4}\)
But,
x = \(\frac{2}{5}T_1\), y = \(\frac{3}{5}T_1\)
y = \(\frac{3}{7}T_2\), z = \(\frac{4}{7}T_2\)
Using y = y
\(\frac{3}{5}T_1\) = x = \(\frac{3}{7}T_2\)
\(\frac{T_1}{T_2}\) = \(\frac{3}{7}\) x \(\frac{5}{3}\) = \(\frac{15}{21}\)
\(T_1 = 15\) and \(T_2 = 21\)
Thus , x = \(\frac{2}{5}\) x 15 = 6
y = \(\frac{3}{5}\) x 15 = 9
y = \(\frac{3}{7}\) x 21 = 9
z = \(\frac{4}{7}\) x 21 = 12
Hence; x : z = 6 : 12
= 1
29.

Expression 0.612 in the form \(\frac{x}{y}\), where x and y are integers and y \(\neq\) 0

A. \(\frac{153}{250}\)

B. \(\frac{68}{111}\)

C. \(\frac{61}{100}\)

D. \(\frac{21}{33}\)

Detailed Solution

0.612 = \(\frac{0.612}{1}\) x \(\frac{1000}{1000}\)
= \(\frac{612}{1000}\)
= \(\frac{153}{250}\)
30.

The angle of elevation of the top of a tree from a point 27m away and on the same horizontal ground as the foot of the tree is 30\(^o\). Find the height of the tree.

A. 27m

B. 13.5 \(\sqrt{3m}\)

C. 13.5 \(\sqrt{2m}\)

D. 9\(\sqrt{3m}\)

Detailed Solution

From the diagram,
tan 30\(^o\) = \(\frac{h}{27}\)
h = 27 tan 30\(^o\)
= 27 x \(\frac{1}{\sqrt{3}}\)
= \(\frac{27}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{27 \sqrt{3}}{3}\)
= 9\(\sqrt{3m}\)