Year : 
1997
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 45 Questions

# Question Ans
21.

Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\)

A. 3

B. 4

C. 7

D. 12

Detailed Solution

\(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(2x - 3y = -1 ... (i)\)
\(-x + 4y = 8 ... (ii)\)
From (ii), x = 4y - 8.
\(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\)
\(5y = -1 + 16 = 15 \implies y = 3\)
\(x = 4(3) - 8 = 12 - 8 = 4\)
\(\therefore x + y = 3 + 4 = 7\)
22.

Find the non-zero positive value of x which satisfies the equation \(\begin{vmatrix} x & 1 & 0 \\ 1 & x & x \\ 0 & 1 & x\end{vmatrix}\) = 0

A. 2

B. 4

C. √3

D. √2

E. 1

Detailed Solution

x(x2 - 1) - x = 0

= x3 - 2x = 0

x(x2 - 2) = 0

x = 2
23.

Each of the base angles of a isosceles triangle is 58° and the verticles of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle.

A. 128o

B. 16o

C. 64o

D. 58o

Detailed Solution

Base angle of the triangle = 58°.
The third angle = 180° - (58° + 58°)
= 64°
Angle subtended at the centre = \(2 \times 64° = 128°\) (angle at the centre is twice the angle at the circumference).
24.

A chord of a circle of a diameter 42cm subtends an angle of 60o at the centre of the circle. Find the length of the mirror arc

A. 22cm

B. 44cm

C. 110cm

D. 220cm

Detailed Solution

Diameter = 42cm
Length of the arc = \(\frac{\theta}{360°} \times \pi d\)
= \(\frac{60}{360} \times \frac{22}{7} \times 42cm\)
= \(22cm\)
25.

An arc of a circle subtends an angle 70o at the centre. If the radius of the circle is 6cm, calculate the area of the sector subtended by the given angle.(\(\pi\) = \(\frac{22}{7}\))

A. 22cm2

B. 44cm2

C. 66cm2

D. 88cm2

Detailed Solution

Area of a sector = \(\frac{\theta}{360°} \times \pi r^{2}\)
r = 6cm; \(\theta\) = 70°.
Area of the sector = \(\frac{70}{360} \times \frac{22}{7} \times 6^{2}\)
= \(22 cm^{2}\)
26.

A cone with the sector angle of 45° is cut out of a circle of radius r of the cone.

A. \(\frac{r}{16}\) cm

B. \(\frac{r}{6}\) cm

C. \(\frac{r}{8}\) cm

D. \(\frac{r}{2}\) cm

Detailed Solution

The formula for the base radius of a cone formed from the sector of a circle = \(\frac{r \theta}{360°}\)
= \(\frac{r \times 45°}{360°}\)
= \(\frac{r}{8} cm\)
27.

The angle between the positive horizontal axis and a given line is 135o. Find the equation of the line if it passes through the point (2,3)

A. x - y = 1

B. x + y = 1

C. x + y = 5

D. x - y = 5

Detailed Solution

m = tan 135o = -tan 45o = -1

\(\frac{y - y_1}{x - x_1}\) = m

\(\frac{y - 3}{x - 2}\) = -1

= y - 3 = -(x - 2)

= -x + 2

x + y = 5
28.

A point P moves so that its equidistant from point L and M. If LM is16cm, find the distance of P from LM when P is 10cm from L

A. 12cm

B. 10cm

C. 8cm

D. 6cm

Detailed Solution

p from LM = \(\sqrt{10^2 - 8^2}\)

= \(\sqrt{36}\) = 6cm
29.

Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2

A. 3√10

B. 3√5

C. √26

D. √13

Detailed Solution

2x - y .....(i)

x + y.....(ii)

from (i) y = 2x - 4

from (ii) y = -x + 2

2x - 4 = -x + 2

x = 2

y = -x + 2

= -2 + 2

= 0

x1 = 21

y4 = 01

x2 = 41

y2 = 3

Hence, dist. = \(\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}\)

= \(\sqrt{(3 - 0)^2}\) + (4 - 2)2

= \(\
30.

The angle of elevation of a building from a measuring instrument placed on the ground is 30o. If the building is 40m high, how far is the instrument from the foot of the building?

A. \(\frac{20}{√3}\)m

B. \(\frac{40}{√3}\)m

C. 20√3m

D. 40√3m

Detailed Solution

\(\frac{40}{x}\) = tan 30o

x = \(\frac{40}{tan 36}\)

= \(\frac{40}{1\sqrt{3}}\)

= 40√3m
21.

Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\)

A. 3

B. 4

C. 7

D. 12

Detailed Solution

\(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)
\(2x - 3y = -1 ... (i)\)
\(-x + 4y = 8 ... (ii)\)
From (ii), x = 4y - 8.
\(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\)
\(5y = -1 + 16 = 15 \implies y = 3\)
\(x = 4(3) - 8 = 12 - 8 = 4\)
\(\therefore x + y = 3 + 4 = 7\)
22.

Find the non-zero positive value of x which satisfies the equation \(\begin{vmatrix} x & 1 & 0 \\ 1 & x & x \\ 0 & 1 & x\end{vmatrix}\) = 0

A. 2

B. 4

C. √3

D. √2

E. 1

Detailed Solution

x(x2 - 1) - x = 0

= x3 - 2x = 0

x(x2 - 2) = 0

x = 2
23.

Each of the base angles of a isosceles triangle is 58° and the verticles of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle.

A. 128o

B. 16o

C. 64o

D. 58o

Detailed Solution

Base angle of the triangle = 58°.
The third angle = 180° - (58° + 58°)
= 64°
Angle subtended at the centre = \(2 \times 64° = 128°\) (angle at the centre is twice the angle at the circumference).
24.

A chord of a circle of a diameter 42cm subtends an angle of 60o at the centre of the circle. Find the length of the mirror arc

A. 22cm

B. 44cm

C. 110cm

D. 220cm

Detailed Solution

Diameter = 42cm
Length of the arc = \(\frac{\theta}{360°} \times \pi d\)
= \(\frac{60}{360} \times \frac{22}{7} \times 42cm\)
= \(22cm\)
25.

An arc of a circle subtends an angle 70o at the centre. If the radius of the circle is 6cm, calculate the area of the sector subtended by the given angle.(\(\pi\) = \(\frac{22}{7}\))

A. 22cm2

B. 44cm2

C. 66cm2

D. 88cm2

Detailed Solution

Area of a sector = \(\frac{\theta}{360°} \times \pi r^{2}\)
r = 6cm; \(\theta\) = 70°.
Area of the sector = \(\frac{70}{360} \times \frac{22}{7} \times 6^{2}\)
= \(22 cm^{2}\)
26.

A cone with the sector angle of 45° is cut out of a circle of radius r of the cone.

A. \(\frac{r}{16}\) cm

B. \(\frac{r}{6}\) cm

C. \(\frac{r}{8}\) cm

D. \(\frac{r}{2}\) cm

Detailed Solution

The formula for the base radius of a cone formed from the sector of a circle = \(\frac{r \theta}{360°}\)
= \(\frac{r \times 45°}{360°}\)
= \(\frac{r}{8} cm\)
27.

The angle between the positive horizontal axis and a given line is 135o. Find the equation of the line if it passes through the point (2,3)

A. x - y = 1

B. x + y = 1

C. x + y = 5

D. x - y = 5

Detailed Solution

m = tan 135o = -tan 45o = -1

\(\frac{y - y_1}{x - x_1}\) = m

\(\frac{y - 3}{x - 2}\) = -1

= y - 3 = -(x - 2)

= -x + 2

x + y = 5
28.

A point P moves so that its equidistant from point L and M. If LM is16cm, find the distance of P from LM when P is 10cm from L

A. 12cm

B. 10cm

C. 8cm

D. 6cm

Detailed Solution

p from LM = \(\sqrt{10^2 - 8^2}\)

= \(\sqrt{36}\) = 6cm
29.

Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2

A. 3√10

B. 3√5

C. √26

D. √13

Detailed Solution

2x - y .....(i)

x + y.....(ii)

from (i) y = 2x - 4

from (ii) y = -x + 2

2x - 4 = -x + 2

x = 2

y = -x + 2

= -2 + 2

= 0

x1 = 21

y4 = 01

x2 = 41

y2 = 3

Hence, dist. = \(\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}\)

= \(\sqrt{(3 - 0)^2}\) + (4 - 2)2

= \(\
30.

The angle of elevation of a building from a measuring instrument placed on the ground is 30o. If the building is 40m high, how far is the instrument from the foot of the building?

A. \(\frac{20}{√3}\)m

B. \(\frac{40}{√3}\)m

C. 20√3m

D. 40√3m

Detailed Solution

\(\frac{40}{x}\) = tan 30o

x = \(\frac{40}{tan 36}\)

= \(\frac{40}{1\sqrt{3}}\)

= 40√3m