21 - 30 of 45 Questions
# | Question | Ans |
---|---|---|
21. |
Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\) A. 3 B. 4 C. 7 D. 12 Detailed Solution\(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)\(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\) \(2x - 3y = -1 ... (i)\) \(-x + 4y = 8 ... (ii)\) From (ii), x = 4y - 8. \(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\) \(5y = -1 + 16 = 15 \implies y = 3\) \(x = 4(3) - 8 = 12 - 8 = 4\) \(\therefore x + y = 3 + 4 = 7\) |
|
22. |
Find the non-zero positive value of x which satisfies the equation \(\begin{vmatrix} x & 1 & 0 \\ 1 & x & x \\ 0 & 1 & x\end{vmatrix}\) = 0 A. 2 B. 4 C. √3 D. √2 E. 1 Detailed Solutionx(x2 - 1) - x = 0= x3 - 2x = 0 x(x2 - 2) = 0 x = 2 |
|
23. |
Each of the base angles of a isosceles triangle is 58° and the verticles of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle. A. 128o B. 16o C. 64o D. 58o Detailed SolutionBase angle of the triangle = 58°.The third angle = 180° - (58° + 58°) = 64° Angle subtended at the centre = \(2 \times 64° = 128°\) (angle at the centre is twice the angle at the circumference). |
|
24. |
A chord of a circle of a diameter 42cm subtends an angle of 60o at the centre of the circle. Find the length of the mirror arc A. 22cm B. 44cm C. 110cm D. 220cm Detailed SolutionDiameter = 42cmLength of the arc = \(\frac{\theta}{360°} \times \pi d\) = \(\frac{60}{360} \times \frac{22}{7} \times 42cm\) = \(22cm\) |
|
25. |
An arc of a circle subtends an angle 70o at the centre. If the radius of the circle is 6cm, calculate the area of the sector subtended by the given angle.(\(\pi\) = \(\frac{22}{7}\)) A. 22cm2 B. 44cm2 C. 66cm2 D. 88cm2 Detailed SolutionArea of a sector = \(\frac{\theta}{360°} \times \pi r^{2}\)r = 6cm; \(\theta\) = 70°. Area of the sector = \(\frac{70}{360} \times \frac{22}{7} \times 6^{2}\) = \(22 cm^{2}\) |
|
26. |
A cone with the sector angle of 45° is cut out of a circle of radius r of the cone. A. \(\frac{r}{16}\) cm B. \(\frac{r}{6}\) cm C. \(\frac{r}{8}\) cm D. \(\frac{r}{2}\) cm Detailed SolutionThe formula for the base radius of a cone formed from the sector of a circle = \(\frac{r \theta}{360°}\)= \(\frac{r \times 45°}{360°}\) = \(\frac{r}{8} cm\) |
|
27. |
The angle between the positive horizontal axis and a given line is 135o. Find the equation of the line if it passes through the point (2,3) A. x - y = 1 B. x + y = 1 C. x + y = 5 D. x - y = 5 Detailed Solutionm = tan 135o = -tan 45o = -1\(\frac{y - y_1}{x - x_1}\) = m \(\frac{y - 3}{x - 2}\) = -1 = y - 3 = -(x - 2) = -x + 2 x + y = 5 |
|
28. |
A point P moves so that its equidistant from point L and M. If LM is16cm, find the distance of P from LM when P is 10cm from L A. 12cm B. 10cm C. 8cm D. 6cm Detailed Solutionp from LM = \(\sqrt{10^2 - 8^2}\)= \(\sqrt{36}\) = 6cm |
|
29. |
Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2 A. 3√10 B. 3√5 C. √26 D. √13 Detailed Solution2x - y .....(i)x + y.....(ii) from (i) y = 2x - 4 from (ii) y = -x + 2 2x - 4 = -x + 2 x = 2 y = -x + 2 = -2 + 2 = 0 x1 = 21 y4 = 01 x2 = 41 y2 = 3 Hence, dist. = \(\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}\) = \(\sqrt{(3 - 0)^2}\) + (4 - 2)2 = \(\ |
|
30. |
The angle of elevation of a building from a measuring instrument placed on the ground is 30o. If the building is 40m high, how far is the instrument from the foot of the building? A. \(\frac{20}{√3}\)m B. \(\frac{40}{√3}\)m C. 20√3m D. 40√3m Detailed Solution\(\frac{40}{x}\) = tan 30ox = \(\frac{40}{tan 36}\) = \(\frac{40}{1\sqrt{3}}\) = 40√3m |
21. |
Determine x + y if \(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}\) \(\begin{pmatrix} x \\ y \end{pmatrix}\) = \(\begin{pmatrix}-1 \\ 8 \end{pmatrix}\) A. 3 B. 4 C. 7 D. 12 Detailed Solution\(\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\)\(\begin{pmatrix} 2x - 3y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}\) \(2x - 3y = -1 ... (i)\) \(-x + 4y = 8 ... (ii)\) From (ii), x = 4y - 8. \(2(4y - 8) - 3y = -1 \implies 8y - 16 - 3y = -1\) \(5y = -1 + 16 = 15 \implies y = 3\) \(x = 4(3) - 8 = 12 - 8 = 4\) \(\therefore x + y = 3 + 4 = 7\) |
|
22. |
Find the non-zero positive value of x which satisfies the equation \(\begin{vmatrix} x & 1 & 0 \\ 1 & x & x \\ 0 & 1 & x\end{vmatrix}\) = 0 A. 2 B. 4 C. √3 D. √2 E. 1 Detailed Solutionx(x2 - 1) - x = 0= x3 - 2x = 0 x(x2 - 2) = 0 x = 2 |
|
23. |
Each of the base angles of a isosceles triangle is 58° and the verticles of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle. A. 128o B. 16o C. 64o D. 58o Detailed SolutionBase angle of the triangle = 58°.The third angle = 180° - (58° + 58°) = 64° Angle subtended at the centre = \(2 \times 64° = 128°\) (angle at the centre is twice the angle at the circumference). |
|
24. |
A chord of a circle of a diameter 42cm subtends an angle of 60o at the centre of the circle. Find the length of the mirror arc A. 22cm B. 44cm C. 110cm D. 220cm Detailed SolutionDiameter = 42cmLength of the arc = \(\frac{\theta}{360°} \times \pi d\) = \(\frac{60}{360} \times \frac{22}{7} \times 42cm\) = \(22cm\) |
|
25. |
An arc of a circle subtends an angle 70o at the centre. If the radius of the circle is 6cm, calculate the area of the sector subtended by the given angle.(\(\pi\) = \(\frac{22}{7}\)) A. 22cm2 B. 44cm2 C. 66cm2 D. 88cm2 Detailed SolutionArea of a sector = \(\frac{\theta}{360°} \times \pi r^{2}\)r = 6cm; \(\theta\) = 70°. Area of the sector = \(\frac{70}{360} \times \frac{22}{7} \times 6^{2}\) = \(22 cm^{2}\) |
26. |
A cone with the sector angle of 45° is cut out of a circle of radius r of the cone. A. \(\frac{r}{16}\) cm B. \(\frac{r}{6}\) cm C. \(\frac{r}{8}\) cm D. \(\frac{r}{2}\) cm Detailed SolutionThe formula for the base radius of a cone formed from the sector of a circle = \(\frac{r \theta}{360°}\)= \(\frac{r \times 45°}{360°}\) = \(\frac{r}{8} cm\) |
|
27. |
The angle between the positive horizontal axis and a given line is 135o. Find the equation of the line if it passes through the point (2,3) A. x - y = 1 B. x + y = 1 C. x + y = 5 D. x - y = 5 Detailed Solutionm = tan 135o = -tan 45o = -1\(\frac{y - y_1}{x - x_1}\) = m \(\frac{y - 3}{x - 2}\) = -1 = y - 3 = -(x - 2) = -x + 2 x + y = 5 |
|
28. |
A point P moves so that its equidistant from point L and M. If LM is16cm, find the distance of P from LM when P is 10cm from L A. 12cm B. 10cm C. 8cm D. 6cm Detailed Solutionp from LM = \(\sqrt{10^2 - 8^2}\)= \(\sqrt{36}\) = 6cm |
|
29. |
Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2 A. 3√10 B. 3√5 C. √26 D. √13 Detailed Solution2x - y .....(i)x + y.....(ii) from (i) y = 2x - 4 from (ii) y = -x + 2 2x - 4 = -x + 2 x = 2 y = -x + 2 = -2 + 2 = 0 x1 = 21 y4 = 01 x2 = 41 y2 = 3 Hence, dist. = \(\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}\) = \(\sqrt{(3 - 0)^2}\) + (4 - 2)2 = \(\ |
|
30. |
The angle of elevation of a building from a measuring instrument placed on the ground is 30o. If the building is 40m high, how far is the instrument from the foot of the building? A. \(\frac{20}{√3}\)m B. \(\frac{40}{√3}\)m C. 20√3m D. 40√3m Detailed Solution\(\frac{40}{x}\) = tan 30ox = \(\frac{40}{tan 36}\) = \(\frac{40}{1\sqrt{3}}\) = 40√3m |