Year : 
1997
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

1 - 10 of 45 Questions

# Question Ans
1.

Evaluate 64.764\(^2\) - 35.236\(^2\) correct to 3 significant figures

A. 2960

B. 2950

C. 2860

D. 2850

Detailed Solution

(64.764 - 35.236)(64.764 + 35.236)

= 29.528 x 100

= 2950 to 3 sig. fig.
2.

Find the value of (0.006)3 + (0.004)3 in standard form

A. 2.8 x 10-9

B. 2.8 x 10-7

C. 2.8 x 10-8

D. 2.8 x 10-6

Detailed Solution

(0.006)3 + (0.004)3 = 2.16 x 10-7

(2.16 + 0.64) x 10-7

= 2.8 x 10-7
3.

Given that loga2 = 0.693 and loga3 = 1.097, find loga 13.5

A. 1.404

B. 1.790

C. 2.598

D. 2.790

Detailed Solution

loga 13.5 = loga \(\frac{27}{2}\)

= 3loga 3 - log2a

= 3 x 1.097 - 0.693

= 2.598
4.

If 8\(\frac{x}{2}\) = (2\(\frac{3}{8}\))(4\(\frac{3}{4}\)), find x

A. \(\frac{3}{8}\)

B. \(\frac{3}{4}\)

C. \(\frac{4}{5}\)

D. \(\frac{5}{4}\)

Detailed Solution

8\(\frac{x}{2}\) = 2\(\frac{3}{8}\)22 x \(\frac{3}{4}\) 2\(\frac{3x}{2}\)

= 2\(\frac{3}{4}\) \(\frac{3x}{2}\)

= \(\frac{15}{8}\)

\(\frac{2 \times 15}{3 \times 8}\) = \(\frac{5}{4}\)
5.

Simplify \(\frac{2\sqrt{3} + 3\sqrt{5}}{3\sqrt{5} - 2\sqrt{3}}\)

A. \(\frac{19 + 4\sqrt{25}}{11}\)

B. \(\frac{19 + 4\sqrt{15}}{11}\)

C. \(\frac{19 + 2\sqrt{15}}{11}\)

D. \(\frac{19 + 2\sqrt{15}}{19}\)

Detailed Solution

\(\frac{(2\sqrt{3} + 3\sqrt{5})(3\sqrt{5} + 2\sqrt{3})}{(3\sqrt{5} - 2\sqrt{3})(3\sqrt{5} - 2\sqrt{3})}\)

= \(\frac{5 + 12\sqrt{15}}{33}\)

=\(\frac{19 + 4\sqrt{15}}{11}\)
6.

Find the simple interest rate percent per annum at which N1,000 accumulates to N1,240 in 3 years

A. 6%

B. 8%

C. 10%

D. 12%

Detailed Solution

1 = \(\frac{PRT}{100}\)

1 = 1240 - 1000

= 240

R = \(\frac{240 \times 100}{100 \times 3}\)%

= 8%
7.

If U = (s, p, i, e, n, d, o, u, r), X = (s, p, e, n, d) Y = (s, e, n, o, u), Z = (p, n, o, u, r) find X ∩( Y ∪ Z)

A. (p, o, u, r)

B. (s, p, d, r)

C. (s, p, n, e)

D. (n, d, u)

Detailed Solution

\(Y \cup Z\) = \({s, e, n, o, u, p, r}\)
\(X \cap (Y \cup Z)\) = \({p, e, n}\)
8.

A survey of 100 students in an institution shows that 80 students speak Hausa and 20 students speak Igbo, while only 9 students speak both language. How many students speak neither Hausa nor Igbo?

A. 0

B. 9

C. 11

D. 20

Detailed Solution

Let the number of students that speak Hausa and Igbo be represented by H and I respectively.
n(H only) = 80 - 9 = 71.
n(I only) = 20 - 9 = 11.
n(neither H nor I) = 100 - (71 + 9 + 11)
= 100 - 91 = 9 students.
9.

If the function f(fx) = x3 + 2x2 + qx - 6 is divisible by x + 1, find q

A. -5

B. -2

C. 2

D. 5

Detailed Solution

x + 1 = 0, x = -1; f(x) = x3 + 2x2 + qx - 6

0 = -1 + 2 - q - 6

q = -5
10.

Solve the simultaneous equations \(\frac{2}{x} - {\frac{3}{y}}\) = 2, \(\frac{4}{x} + {\frac{3}{y}}\) = 10

A. x = \(\frac{3}{2}\), y = \(\frac{3}{2}\)

B. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C. x = \(\frac{-1}{2}\), y = \(\frac{-3}{2}\)

D. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

Detailed Solution

\(\frac{2}{x} - {\frac{3}{y}}\) = 2.....(1)

\(\frac{4}{x} + {\frac{3}{y}}\) = 10 ... (2)
(1) + (2):

\(\frac{6}{x}\) = 12 \(\to\) x = \(\frac{6}{12}\)

x = \(\frac{1}{2}\)

put x = \(\frac{1}{2}\) in equation (i)

= 4 - \(\frac{3}{y}\) = 2

= 4 - 2

= \(\frac{3}{y}\)

therefore y = \(\frac{3}{2}\)
1.

Evaluate 64.764\(^2\) - 35.236\(^2\) correct to 3 significant figures

A. 2960

B. 2950

C. 2860

D. 2850

Detailed Solution

(64.764 - 35.236)(64.764 + 35.236)

= 29.528 x 100

= 2950 to 3 sig. fig.
2.

Find the value of (0.006)3 + (0.004)3 in standard form

A. 2.8 x 10-9

B. 2.8 x 10-7

C. 2.8 x 10-8

D. 2.8 x 10-6

Detailed Solution

(0.006)3 + (0.004)3 = 2.16 x 10-7

(2.16 + 0.64) x 10-7

= 2.8 x 10-7
3.

Given that loga2 = 0.693 and loga3 = 1.097, find loga 13.5

A. 1.404

B. 1.790

C. 2.598

D. 2.790

Detailed Solution

loga 13.5 = loga \(\frac{27}{2}\)

= 3loga 3 - log2a

= 3 x 1.097 - 0.693

= 2.598
4.

If 8\(\frac{x}{2}\) = (2\(\frac{3}{8}\))(4\(\frac{3}{4}\)), find x

A. \(\frac{3}{8}\)

B. \(\frac{3}{4}\)

C. \(\frac{4}{5}\)

D. \(\frac{5}{4}\)

Detailed Solution

8\(\frac{x}{2}\) = 2\(\frac{3}{8}\)22 x \(\frac{3}{4}\) 2\(\frac{3x}{2}\)

= 2\(\frac{3}{4}\) \(\frac{3x}{2}\)

= \(\frac{15}{8}\)

\(\frac{2 \times 15}{3 \times 8}\) = \(\frac{5}{4}\)
5.

Simplify \(\frac{2\sqrt{3} + 3\sqrt{5}}{3\sqrt{5} - 2\sqrt{3}}\)

A. \(\frac{19 + 4\sqrt{25}}{11}\)

B. \(\frac{19 + 4\sqrt{15}}{11}\)

C. \(\frac{19 + 2\sqrt{15}}{11}\)

D. \(\frac{19 + 2\sqrt{15}}{19}\)

Detailed Solution

\(\frac{(2\sqrt{3} + 3\sqrt{5})(3\sqrt{5} + 2\sqrt{3})}{(3\sqrt{5} - 2\sqrt{3})(3\sqrt{5} - 2\sqrt{3})}\)

= \(\frac{5 + 12\sqrt{15}}{33}\)

=\(\frac{19 + 4\sqrt{15}}{11}\)
6.

Find the simple interest rate percent per annum at which N1,000 accumulates to N1,240 in 3 years

A. 6%

B. 8%

C. 10%

D. 12%

Detailed Solution

1 = \(\frac{PRT}{100}\)

1 = 1240 - 1000

= 240

R = \(\frac{240 \times 100}{100 \times 3}\)%

= 8%
7.

If U = (s, p, i, e, n, d, o, u, r), X = (s, p, e, n, d) Y = (s, e, n, o, u), Z = (p, n, o, u, r) find X ∩( Y ∪ Z)

A. (p, o, u, r)

B. (s, p, d, r)

C. (s, p, n, e)

D. (n, d, u)

Detailed Solution

\(Y \cup Z\) = \({s, e, n, o, u, p, r}\)
\(X \cap (Y \cup Z)\) = \({p, e, n}\)
8.

A survey of 100 students in an institution shows that 80 students speak Hausa and 20 students speak Igbo, while only 9 students speak both language. How many students speak neither Hausa nor Igbo?

A. 0

B. 9

C. 11

D. 20

Detailed Solution

Let the number of students that speak Hausa and Igbo be represented by H and I respectively.
n(H only) = 80 - 9 = 71.
n(I only) = 20 - 9 = 11.
n(neither H nor I) = 100 - (71 + 9 + 11)
= 100 - 91 = 9 students.
9.

If the function f(fx) = x3 + 2x2 + qx - 6 is divisible by x + 1, find q

A. -5

B. -2

C. 2

D. 5

Detailed Solution

x + 1 = 0, x = -1; f(x) = x3 + 2x2 + qx - 6

0 = -1 + 2 - q - 6

q = -5
10.

Solve the simultaneous equations \(\frac{2}{x} - {\frac{3}{y}}\) = 2, \(\frac{4}{x} + {\frac{3}{y}}\) = 10

A. x = \(\frac{3}{2}\), y = \(\frac{3}{2}\)

B. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C. x = \(\frac{-1}{2}\), y = \(\frac{-3}{2}\)

D. x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

Detailed Solution

\(\frac{2}{x} - {\frac{3}{y}}\) = 2.....(1)

\(\frac{4}{x} + {\frac{3}{y}}\) = 10 ... (2)
(1) + (2):

\(\frac{6}{x}\) = 12 \(\to\) x = \(\frac{6}{12}\)

x = \(\frac{1}{2}\)

put x = \(\frac{1}{2}\) in equation (i)

= 4 - \(\frac{3}{y}\) = 2

= 4 - 2

= \(\frac{3}{y}\)

therefore y = \(\frac{3}{2}\)