Year : 
1997
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 45 Questions

# Question Ans
11.

Find the minimum value of X2 - 3x + 2 for all real values of x

A. -\(\frac{1}{4}\)

B. -\(\frac{1}{2}\)

C. \(\frac{1}{4}\)

D. \(\frac{1}{2}\)

Detailed Solution

y = X2 - 3x + 2, \(\frac{dy}{dx}\) = 2x - 3

at turning pt, \(\frac{dy}{dx}\) = 0

∴ 2x - 3 = 0

∴ x = \(\frac{3}{2}\)

\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))

= 270

∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2

= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2

= -\(\frac{1}{4}\)
12.

Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

A. \(\frac{gv-t^2}{gt^2}\)

B. \(\frac{gt^2}{gv-t^2}\)

C. \(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)

D. \(\frac{gv}{t^2 - g}\)

Detailed Solution

t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

t2 = \(\frac{v}{\frac{1}{f} + \frac{1}{g}}\)

= \(\frac{vfg}{ftg}\)

\(\frac{1}{f} + \frac{1}{g}\) = \(\frac{v}{t^2}\)

= (g + f)t2 = vfg

gt2 = vfg - ft2

gt2 = f(vg - t2)

f = \(\frac{gt^2}{gv-t^2}\)
13.

What value of g will make the expression 4x2 - 18xy + g a perfect square?

A. 9

B. \(\frac{9y^2}{4}\)

C. 81y^2

D. \(\frac{18y^2}{4}\)

Detailed Solution

4x2 - 18xy + g = g \(\to\) (\(\frac{18y}{4}\))2

= \(\frac{18y^2}{4}\)
14.

Find the value of k if \(\frac{5 + 2r}{(r + 1)(r - 2)}\) expressed in partial fraction is \(\frac{k}{r - 2}\) + \(\frac{L}{r + 1}\) where K and L are constants

A. 3

B. 2

C. 1

D. -1

Detailed Solution

5 + 2r = k(r + 1) + L(r - 2)

but r - 2 = 0 and r = 2

9 = 3k

k = 3
15.

Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \(\frac{f(x)}{g(x)}\) < 1

A. x < - \(\frac{3}{4}\)

B. x > - \(\frac{4}{3}\)

C. x > - \(\frac{3}{4}\)

D. x > - 12

Detailed Solution

\(\frac{f(x)}{g(x)}\) < 1

∴ \(\frac{2x +4}{6x + 7}\) < 1

= 2x + 4 < 6x + 7

= 6x + 7 > 2x + 4

= 6x - 2x > 4 - 7

= 4x > -3

∴ x > -\(\frac{3}{4}\)
16.

Find the range of values of x which satisfies the inequality 12x2 < x + 1

A. -\(\frac{1}{4}\) < x < \(\frac{1}{3}\)

B. \(\frac{1}{4}\) < x < -\(\frac{1}{3}\)

C. -\(\frac{1}{3}\) < x < \(\frac{1}{4}\)

D. -\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)

Detailed Solution

12x2 < x + 1

12 - x - 1 < 0

12x2 - 4x + 3x - 1 < 0

4x(3x - 1) + (3x - 1) < 0

Case 1 (+, -)

4x + 1 > 0, 3x - 1 < 0

x > -\(\frac{1}{4}\)x < \(\frac{1}{3}\)

Case 2 (-, +) 4x + 1 < 0, 3x - 1 > 0

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)
17.

Sn is the sum of the first n terms of a series given by Sn = n\(^2\) - 1. Find the nth term

A. 4n + 1

B. 4n - 1

C. 2n + 1

D. 2n - 1

Detailed Solution

\(S_{n} = n^{2} - 1\)
\(T_{n} = S_{n} - S_{n - 1}\)
\(S_{n - 1} = (n - 1)^{2} - 1\)
= \(n^{2} - 2n + 1 - 1\)
= \(n^{2} - 2n\)
\(S_{n} - S_{n - 1} = (n^{2} - 1) - (n^{2} - 2n)\)
= \(2n - 1\)
18.

The nth term of a sequence is given 31 - n , find the sum of the first terms of the sequence.

A. \(\frac{13}{9}\)

B. 1

C. \(\frac{1}{3}\)

D. \(\frac{1}{9}\)

Detailed Solution

Tn = 31 - n

S3 = 31 - 1 + 31 - 2 + 31 - 3

= 1 + \(\frac{1}{3}\) + \(\frac{1}{9}\)

= \(\frac{13}{9}\)
19.

Two binary operations \(\ast\) and \(\oplus\) are defines as m \(\ast\) n = mn - n - 1 and m \(\oplus\) n = mn + n - 2 for all real numbers m, n.

Find the value of 3 \(\oplus\) (4 \(\ast\) 50)

A. 60

B. 57

C. 54

D. 42

Detailed Solution

m \(\ast\) n = mn - n - 1, m \(\oplus\) n = mn + n - 2

3 \(\oplus\) (4 \(\ast\) 5) = 3 \(\oplus\) (4 x 5 - 5 - 1) = 3 \(\oplus\) 14

3 \(\oplus\) 14 = 3 x 14 + 14 - 2

= 54
20.

If X \(\ast\) Y = X + Y - XY, find x when (x \(\ast\) 2) + (x \(\ast\) 3) = 68

A. 24

B. 22

C. -12

D. -21

Detailed Solution

x \(\ast\) y = x + y - xy

(x \(\ast\) 2) + (x \(\ast\) 3) = 68

= x + 2 - 2x + x + 3 - 3x

= 86

3x = 63

x = -21
11.

Find the minimum value of X2 - 3x + 2 for all real values of x

A. -\(\frac{1}{4}\)

B. -\(\frac{1}{2}\)

C. \(\frac{1}{4}\)

D. \(\frac{1}{2}\)

Detailed Solution

y = X2 - 3x + 2, \(\frac{dy}{dx}\) = 2x - 3

at turning pt, \(\frac{dy}{dx}\) = 0

∴ 2x - 3 = 0

∴ x = \(\frac{3}{2}\)

\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))

= 270

∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2

= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2

= -\(\frac{1}{4}\)
12.

Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

A. \(\frac{gv-t^2}{gt^2}\)

B. \(\frac{gt^2}{gv-t^2}\)

C. \(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)

D. \(\frac{gv}{t^2 - g}\)

Detailed Solution

t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

t2 = \(\frac{v}{\frac{1}{f} + \frac{1}{g}}\)

= \(\frac{vfg}{ftg}\)

\(\frac{1}{f} + \frac{1}{g}\) = \(\frac{v}{t^2}\)

= (g + f)t2 = vfg

gt2 = vfg - ft2

gt2 = f(vg - t2)

f = \(\frac{gt^2}{gv-t^2}\)
13.

What value of g will make the expression 4x2 - 18xy + g a perfect square?

A. 9

B. \(\frac{9y^2}{4}\)

C. 81y^2

D. \(\frac{18y^2}{4}\)

Detailed Solution

4x2 - 18xy + g = g \(\to\) (\(\frac{18y}{4}\))2

= \(\frac{18y^2}{4}\)
14.

Find the value of k if \(\frac{5 + 2r}{(r + 1)(r - 2)}\) expressed in partial fraction is \(\frac{k}{r - 2}\) + \(\frac{L}{r + 1}\) where K and L are constants

A. 3

B. 2

C. 1

D. -1

Detailed Solution

5 + 2r = k(r + 1) + L(r - 2)

but r - 2 = 0 and r = 2

9 = 3k

k = 3
15.

Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality \(\frac{f(x)}{g(x)}\) < 1

A. x < - \(\frac{3}{4}\)

B. x > - \(\frac{4}{3}\)

C. x > - \(\frac{3}{4}\)

D. x > - 12

Detailed Solution

\(\frac{f(x)}{g(x)}\) < 1

∴ \(\frac{2x +4}{6x + 7}\) < 1

= 2x + 4 < 6x + 7

= 6x + 7 > 2x + 4

= 6x - 2x > 4 - 7

= 4x > -3

∴ x > -\(\frac{3}{4}\)
16.

Find the range of values of x which satisfies the inequality 12x2 < x + 1

A. -\(\frac{1}{4}\) < x < \(\frac{1}{3}\)

B. \(\frac{1}{4}\) < x < -\(\frac{1}{3}\)

C. -\(\frac{1}{3}\) < x < \(\frac{1}{4}\)

D. -\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)

Detailed Solution

12x2 < x + 1

12 - x - 1 < 0

12x2 - 4x + 3x - 1 < 0

4x(3x - 1) + (3x - 1) < 0

Case 1 (+, -)

4x + 1 > 0, 3x - 1 < 0

x > -\(\frac{1}{4}\)x < \(\frac{1}{3}\)

Case 2 (-, +) 4x + 1 < 0, 3x - 1 > 0

-\(\frac{1}{4}\) < x < - \(\frac{1}{3}\)
17.

Sn is the sum of the first n terms of a series given by Sn = n\(^2\) - 1. Find the nth term

A. 4n + 1

B. 4n - 1

C. 2n + 1

D. 2n - 1

Detailed Solution

\(S_{n} = n^{2} - 1\)
\(T_{n} = S_{n} - S_{n - 1}\)
\(S_{n - 1} = (n - 1)^{2} - 1\)
= \(n^{2} - 2n + 1 - 1\)
= \(n^{2} - 2n\)
\(S_{n} - S_{n - 1} = (n^{2} - 1) - (n^{2} - 2n)\)
= \(2n - 1\)
18.

The nth term of a sequence is given 31 - n , find the sum of the first terms of the sequence.

A. \(\frac{13}{9}\)

B. 1

C. \(\frac{1}{3}\)

D. \(\frac{1}{9}\)

Detailed Solution

Tn = 31 - n

S3 = 31 - 1 + 31 - 2 + 31 - 3

= 1 + \(\frac{1}{3}\) + \(\frac{1}{9}\)

= \(\frac{13}{9}\)
19.

Two binary operations \(\ast\) and \(\oplus\) are defines as m \(\ast\) n = mn - n - 1 and m \(\oplus\) n = mn + n - 2 for all real numbers m, n.

Find the value of 3 \(\oplus\) (4 \(\ast\) 50)

A. 60

B. 57

C. 54

D. 42

Detailed Solution

m \(\ast\) n = mn - n - 1, m \(\oplus\) n = mn + n - 2

3 \(\oplus\) (4 \(\ast\) 5) = 3 \(\oplus\) (4 x 5 - 5 - 1) = 3 \(\oplus\) 14

3 \(\oplus\) 14 = 3 x 14 + 14 - 2

= 54
20.

If X \(\ast\) Y = X + Y - XY, find x when (x \(\ast\) 2) + (x \(\ast\) 3) = 68

A. 24

B. 22

C. -12

D. -21

Detailed Solution

x \(\ast\) y = x + y - xy

(x \(\ast\) 2) + (x \(\ast\) 3) = 68

= x + 2 - 2x + x + 3 - 3x

= 86

3x = 63

x = -21