Year : 
1990
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 44 Questions

# Question Ans
11.

Simplify (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1

A. \(\frac{x}{y}\)

B. xy

C. \(\frac{x}{y}\)

D. (xy)-1

Detailed Solution

Simplify (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1 = (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1

= (x + y)-1 = \(\frac{(x)}{y}\)

= \(\frac{x}{y}\)
12.

If a = 2, b = -2 and c = -\(\frac{1}{2}\), evaluate (ab2 - bc2)(a2c - abc)

A. 2

B. -28

C. -30

D. -34

Detailed Solution

(ab2 - bc2)(a2c - abc)

[2(2)2 - (- 2x\(\frac{1}{2}\))] [22(-\(\frac{1}{2}\)) - 2(-2)(-\(\frac{1}{2}\))]

[8 = \(\frac{1}{2}\)][-2 - 2] = \(\frac{17}{2}\) x 42

= -34
13.

If f(x - 4) = x2 + 2x + 3, Find, f(2)

A. 6

B. 11

C. 27

D. 51

Detailed Solution

f(x - 4) = x2 + 2x + 3

To find f(2) = f(x - 4)

= f(2)

x - 4 = 2

x = 6

f(2) = 62 + 2(6) + 3

= 36 + 12 + 3

= 51
14.

Factorize 9(x + y)2 - 4(x - y)2

A. (x + y)(5x + y)

B. (x + y)2

C. (x + 5y)(5x + y)

D. 5(x + y)2

Detailed Solution

9(x + y)2 - 4(x - y)2

Using difference of two squares which says

a2 - b2 = (a + b)(a - b) = 9(x + y)2 - 4(x - y)2

= [3(x + y)]2 - [2(x - y)]-2

= [3(x + y) + 2(x - y) + 2(x - y)][3(x + y) - 2(x - y)]

= [3x +3y + 2x - 2y][3x + 3y - 2x + 2y]

= (5x + y)(x + 5y)
15.

If a2 + b2 = 16 and 2ab = 7.Find all the possible values of (a - b)

A. 3, -3

B. 2, -2

C. 1, -1

D. 3, -1

Detailed Solution

a2 + b2 = 16 and 2ab = 7

To find all possible values = (a - b)2 + b2 - 2ab

Substituting the given values = (a - b)2

= 16 - 7

= 9

(a - b) = \(\pm\)9

= \(\pm\)3

OR a - b = 3, -3
16.

Divide x3 - 2x2 - 5x + 6 by (x - 1)

A. x2 - x - 6

B. x2 - 5x + 6

C. x2 - 7x + 6

D. x2 - 5x - 6

Detailed Solution

Step 1: Just multiply each of the options by ( x - 1 )
Step 2: Then collect like terms to derive the same equation found in the question.

Hope this helps!
17.

If x + \(\frac{1}{x}\) = 4, find x2 + \(\frac{1}{x^2}\)

A. 16

B. 14

C. 12

D. 9

Detailed Solution

x + \(\frac{1}{x}\) = 4, find x2 + \(\frac{1}{x^2}\)

= (x + \(\frac{1}{x}\))2 = x2 + \(\frac{1}{x^2}\) + 2

x2 + \(\frac{1}{x^2}\) = ( x + \(\frac{1}{x^2}\))2 - 2

= (4)2 - 2

= 16 - 2

= 14
18.

What must be added to 4x2 - 4 to make it a perfect square?

A. \(\frac{-1}{x^2}\)

B. \(\frac{1}{x^2}\)

C. 1

D. -1

Detailed Solution

(2x \(\frac{-1}{4}\)2 = 4x2 + \(\frac{1}{x^2}\) - 4

what must be added is +\(\frac{1}{x^2}\)
19.

Find the solution of the equation x - 8\(\sqrt{x}\) + 15 = 0

A. 3, 5

B. -3, -5

C. 9, 25

D. -9, 25

Detailed Solution

x - 8\(\sqrt{x}\) + 15 = 0
x + 15 = 8\(\sqrt{x}\)

square both sides = (x + 15)2 = (8 \(\sqrt{x}\)2

x2 + 225 + 30x = 64x

x2 + 225 + 30x - 64x = 0

x2 - 34x + 225 = 0

(x - 9)(x - 25) = 0

x = 9 or 25
20.

The perimeter of a rectangular lawn is 24m. If the area of the lawn is 35m2; how wide is the lawn?

A. 5cm

B. 7m

C. 12m

D. 14m

A

11.

Simplify (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1

A. \(\frac{x}{y}\)

B. xy

C. \(\frac{x}{y}\)

D. (xy)-1

Detailed Solution

Simplify (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1 = (\(\frac{1}{x^{-1}} + \frac{1}{y^{-1}}\))-1

= (x + y)-1 = \(\frac{(x)}{y}\)

= \(\frac{x}{y}\)
12.

If a = 2, b = -2 and c = -\(\frac{1}{2}\), evaluate (ab2 - bc2)(a2c - abc)

A. 2

B. -28

C. -30

D. -34

Detailed Solution

(ab2 - bc2)(a2c - abc)

[2(2)2 - (- 2x\(\frac{1}{2}\))] [22(-\(\frac{1}{2}\)) - 2(-2)(-\(\frac{1}{2}\))]

[8 = \(\frac{1}{2}\)][-2 - 2] = \(\frac{17}{2}\) x 42

= -34
13.

If f(x - 4) = x2 + 2x + 3, Find, f(2)

A. 6

B. 11

C. 27

D. 51

Detailed Solution

f(x - 4) = x2 + 2x + 3

To find f(2) = f(x - 4)

= f(2)

x - 4 = 2

x = 6

f(2) = 62 + 2(6) + 3

= 36 + 12 + 3

= 51
14.

Factorize 9(x + y)2 - 4(x - y)2

A. (x + y)(5x + y)

B. (x + y)2

C. (x + 5y)(5x + y)

D. 5(x + y)2

Detailed Solution

9(x + y)2 - 4(x - y)2

Using difference of two squares which says

a2 - b2 = (a + b)(a - b) = 9(x + y)2 - 4(x - y)2

= [3(x + y)]2 - [2(x - y)]-2

= [3(x + y) + 2(x - y) + 2(x - y)][3(x + y) - 2(x - y)]

= [3x +3y + 2x - 2y][3x + 3y - 2x + 2y]

= (5x + y)(x + 5y)
15.

If a2 + b2 = 16 and 2ab = 7.Find all the possible values of (a - b)

A. 3, -3

B. 2, -2

C. 1, -1

D. 3, -1

Detailed Solution

a2 + b2 = 16 and 2ab = 7

To find all possible values = (a - b)2 + b2 - 2ab

Substituting the given values = (a - b)2

= 16 - 7

= 9

(a - b) = \(\pm\)9

= \(\pm\)3

OR a - b = 3, -3
16.

Divide x3 - 2x2 - 5x + 6 by (x - 1)

A. x2 - x - 6

B. x2 - 5x + 6

C. x2 - 7x + 6

D. x2 - 5x - 6

Detailed Solution

Step 1: Just multiply each of the options by ( x - 1 )
Step 2: Then collect like terms to derive the same equation found in the question.

Hope this helps!
17.

If x + \(\frac{1}{x}\) = 4, find x2 + \(\frac{1}{x^2}\)

A. 16

B. 14

C. 12

D. 9

Detailed Solution

x + \(\frac{1}{x}\) = 4, find x2 + \(\frac{1}{x^2}\)

= (x + \(\frac{1}{x}\))2 = x2 + \(\frac{1}{x^2}\) + 2

x2 + \(\frac{1}{x^2}\) = ( x + \(\frac{1}{x^2}\))2 - 2

= (4)2 - 2

= 16 - 2

= 14
18.

What must be added to 4x2 - 4 to make it a perfect square?

A. \(\frac{-1}{x^2}\)

B. \(\frac{1}{x^2}\)

C. 1

D. -1

Detailed Solution

(2x \(\frac{-1}{4}\)2 = 4x2 + \(\frac{1}{x^2}\) - 4

what must be added is +\(\frac{1}{x^2}\)
19.

Find the solution of the equation x - 8\(\sqrt{x}\) + 15 = 0

A. 3, 5

B. -3, -5

C. 9, 25

D. -9, 25

Detailed Solution

x - 8\(\sqrt{x}\) + 15 = 0
x + 15 = 8\(\sqrt{x}\)

square both sides = (x + 15)2 = (8 \(\sqrt{x}\)2

x2 + 225 + 30x = 64x

x2 + 225 + 30x - 64x = 0

x2 - 34x + 225 = 0

(x - 9)(x - 25) = 0

x = 9 or 25
20.

The perimeter of a rectangular lawn is 24m. If the area of the lawn is 35m2; how wide is the lawn?

A. 5cm

B. 7m

C. 12m

D. 14m

A