Paper 1 | Objectives | 47 Questions
JAMB Exam
Year: 2005
Level: SHS
Time:
Type: Question Paper
Answers provided
No description provided
This paper is yet to be rated
8 Tips To Be More Productive in Test Revision for good grades and higher performance in exams
These are the best study techniques and methods that get higher grades in any school tests or exams.
Past questions are effective for revisions for all tests including WAEC, BECE, SAT, TOEFL, GCSE, IELTS
# | Question | Ans |
---|---|---|
1. |
Find the value of m if 13m + 24m = 41m A. 8 B. 6 C. 5 D. 2
Show Content
Detailed SolutionIf 13m + 24m = 41m1 * m1 + 3 0 + 2 * m1 + 4 * m0 = 4 * m1 + 1 * m0 1 * m + 3 * 1 + 2 * m + 4 * 1 = 4 * m + 1 * 1 m + 3 + 2m + 4 = 4m + 1 3m + 7 = 4m + 1 4m -3m = 7 - 1 m = 6 |
|
2. |
If 3214 is divided by 234 and leaves a remainder r, what is the value of r? A. zero B. 1 C. 2 D. 3
Show Content
Detailed Solution\(\frac{321_4}{23_4}\\=\frac{(3\times4^{2})+(2\times4^{1})+(1\times4^{0})}{(2\times4^{0})+(3\times4^{0})}\\=\frac{3\times16+2\times4+1\times1}{2\times4+3\times1}\\=\frac{48+8+1}{8+3}\\=\frac{57}{11}=5\hspace{1mm}remainder\hspace{1mm}2\\∴r=2_{10} \\ Now\hspace{1mm}convert\hspace{1mm}2_{10} \hspace{1mm}to\hspace{1mm}base\hspace{1mm}4\\\frac{4}{2} = 2\\\frac{4}{0}=0\hspace{1mm}or\hspace{1mm}2\\∴r=2\) |
|
3. |
Simplify 31/2 - (21/3 * 11/4) + 3/5 A. 211/60 B. 21/60 C. 111/60 D. 11/60
Show Content
Detailed Solution31/2 - (21/3 * 11/4) + 3/5= 7/2 - (7/3 * 5/4) + 3/5 = 7/2 - 35/12 + 3/5 = L.C.M = 60 = (210 - 175 + 36)/60 = 71/60 = 111< |
|
4. |
If the interest on N150.00 for 21/2 years is N4.50, find the interest on N250.00 for 6 months at the same rate A. N1.50 B. N7.50 C. N15.00 D. N18.00
Show Content
Detailed Solution\(I = N4.50, P = N150,T=2\frac{1}{2}\hspace{1mm}years\\I=\frac{P\times T\times R}{100}\\4.50=\frac{150 \times 2\frac{1}{2} \times R}{100}\\\frac{4.50}{1}=\frac{150 \times 5 \times R}{100\times 2}\\4.50\times 4 = 15R\\R=\frac{4.50\times5}{15}\\R = \frac{6}{5}\\Again\hspace{1mm}I\hspace{1mm}=\frac{P\times T \times R}{100}\\=\frac{250\times 1 \times 6}{100\times 2\times 5}\\=\frac{3}{2}=N1.50\) |
|
5. |
Three boys shared some oranges. The first received 1/3 of the oranges and the second received 2/3 of the remaining. If the third boy received the remaining 12 oranges, how many oranges did they share A. 60 B. 54 C. 48 D. 42
Show Content
Detailed SolutionLet x = the number of orangesThe 1st received 1/3 of x = 1/3x ∴Remainder = x - 1/3x = 2x/3 The 2nd received 2/3 of 2x/3 = 2/3 * 2x/3 = 4x/3 The 3rd received 12 oranges ∴1/3 |
|
6. |
Evaluate \(\frac{(81^{\frac{3}{4}}-27^{\frac{1}{3}})}{3 \times 2^3}\) A. 3 B. 1 C. 1/3 D. 1/8
Show Content
Detailed Solution\(\frac{81^{\frac{3}{4}}-27^{\frac{1}{3}}}{3 \times 2^3} = \frac{(3^{3-\frac{3}{4}}-3^{3-\frac{3}{4}})}{3\times 2^3}\\=\frac{3^3 - 3}{3 \times 8}\\=\frac{27-3}{24}\\=\frac{24}{24}\\=1\) |
|
7. |
If Log102 = 0.3010 and Log103 = 0.4771, evaluate Log104.5 A. 0.9542 B. 0.6532 C. 0.4771 D. 0.3010
Show Content
Detailed SolutionLog102 = 0.3010 and Log103 = 0.4771Log104.5 = Log1041/2 = Log109/2 = Log109 - Log102 = log1032 - Log102 = 2Log103 - Log102 = 2(0.4771) - 0.3010 = 0.9542 - 0.3010 = 0.6532 |
|
8. |
Simplify \(\frac{(√12-√3)}{(√12+√3)}\) A. zero B. 1/3 C. 3/5 D. 1
Show Content
Detailed Solution\(\frac{(\sqrt{12}-\sqrt{3})}{(\sqrt{12}+\sqrt{3})}=\frac{\sqrt{4\times 3}-\sqrt{3}}{\sqrt{4\times 3}+\sqrt{3}}\\=\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}+\sqrt{3}}\\=\frac{\sqrt{3}}{3\sqrt{3}}\\=\frac{1}{3}\) |
|
9. |
The venn diagram above shows a class of 40 students with the games they play. How many of the students play two games only? A. 19 B. 16 C. 15 D. 4
Show Content
Detailed Solution= 15 |
|
10. |
If m = 3, p = -3, q = 7 and r = 5/2, evaluate m(p+q+r) A. 19.50 B. 19.15 C. 18.95 D. 18.05
Show Content
Detailed Solutionm = 3, p = -3, q = 7 and r = 5/2m(p+q+r) = 3(-3 + 7 + 5/2) = 3(4 + 5/2) = 3(4 + 21/2) = 3 * 61/2 = 3 * 13/2 = 39/2 = 19.50 |
Preview displays only 10 out of the 47 Questions