21 - 30 of 41 Questions
# | Question | Ans |
---|---|---|
21. |
What is the probability of having an odd number in a single toss of a fair die? A. 1/6 B. 1/3 C. 1/2 D. 2/3 E. 5/6 Detailed Solutionn(S) = 6(odd) = {1, 3, 5}n(odd) = 3 pr(odd) = \(\frac{n(odd)}{n(S)}\) 3/6 =1/2 |
|
22. |
![]() A water tank is made with a right-angled trapezium - shaped vertical cross-section so that when it is placed on sloping ground the top of the tank is level. The dimension are given in the diagram above A. 66m3 B. 84m3 C. 132m3 D. 168m3 E. 264m3 Detailed SolutionArea of trapezium = 1/2(a+b)h= 1/2(4 + 7)x4 = 22m2 volume = 22 x 6 = 132m3 |
|
23. |
![]() A water tank is made with a right-angled trapezium - shaped vertical cross-section so that when it is placed on sloping ground the top of the tank is level. The dimension are given in the diagram above A. 1/10 B. 1 C. 10 D. 100 E. 1000 Detailed Solution1m = 100cm, 1m3 = (100cm)3 = 106 cm3but 1000cm4 = 1liter. 106 cm3 = 1000liters. 1m3 = 1000liters. |
|
24. |
Evaluate log106 + log1045 - log1027 without using logarithm tables A. o B. 1 C. 1.1738 D. 1.3802 E. 10 Detailed Solutionlog106 + log1045 - log1027log10 \(\frac{6 \times 45}{27}\) = log102 x 5 log1010 = 1 |
|
25. |
Find the product xy if, x, 3/2, 6/7, y are in G.P A. 24/49 B. 4/7 C. 9/7 D. 7/4 E. 21/8 Detailed SolutionIn GP, when you are given three consecutive terms, say f, g, h, then\(f \times h = g^2\) Given: \(x, \frac{3}{2}, \frac{6}{7}, y\), then \(\frac{6x}{7} = (\frac{3}{2})^2 \implies \frac{6x}{7} = \frac{9}{4} ... (i)\) Also, \(\frac{3y}{2} = (\frac{6}{7})^2 \implies \frac{3y}{2} = \frac{36}{49} ... (ii)\) From \(\frac{6x}{7} = \frac{9}{4} \implies x = \frac{9 \times 7}{6 \times 4}\) \(x = \frac{21}{8}\) Also, \(\frac{3y}{2} = \frac{36}{49} \implies y = \frac{2 \times 36}{3 \times 49}\) = \(\frac{24}{49}\) \(xy = \frac{21}{8} \times \frac{24}{49} = \frac{9}{7}\) |
|
26. |
![]() In the diagram above, O is the center of the circle, BOC is a diameter and angle ADC is 37o A. 147o B. 127o C. 65o D. 53o E. 37o Detailed SolutionFrom the figure \(< ABC = < ADC = 37°\) (angles on the same segment)\(< BCA = 90°\) (angle in semi-circle) \(\therefore\) In \(\Delta ABC\), \(< ACB = 180° - (37° + 90°)\) = 53° |
|
27. |
Factorize 5y2 + 2y - 3a2 A. (5y - a) (y + 3a) B. (5y + a) (y - 3a) C. 5y2 + a (2y - 3a) D. (y - a) (5y + 3a) E. (y + a) (5y - 3a) Detailed Solution5y 2 + 5ay - 3ay - 3a 25y(y + a) - 3a(y + a) (y + a) (5y - 3a) |
|
28. |
![]() Which of the following is a correct method for constructing an angle of 60o at Q? A. I only B. II only C. III only D. I and II only E. II and III only |
B |
29. |
![]() IN the diagram above, LK/PQ, reflex angle KLM = 241° and ∠QPM = 89°. What is the value of ∠LMP? A. 30o B. 61o C. 89o D. 119o E. 150o Detailed SolutionProduce ML to R.From the figure < LRM = 89° (corresponding angles) In triangle LRM, < LMR = 180° - (61° + 89°) = 30° |
|
30. |
Abidjan is 4o west of Accra and on the same circle of latitude. If the radius of this circle of latitude is 6370km, how far is Abidjan west of Accra, correct to the nearest kilometer? [Take π = 22/7] A. 222km B. 445km C. 890km D. 5005km E. 10010km Detailed Solutionθ360 * 2πr = Rcos4o4360 * 400411
|
21. |
What is the probability of having an odd number in a single toss of a fair die? A. 1/6 B. 1/3 C. 1/2 D. 2/3 E. 5/6 Detailed Solutionn(S) = 6(odd) = {1, 3, 5}n(odd) = 3 pr(odd) = \(\frac{n(odd)}{n(S)}\) 3/6 =1/2 |
|
22. |
![]() A water tank is made with a right-angled trapezium - shaped vertical cross-section so that when it is placed on sloping ground the top of the tank is level. The dimension are given in the diagram above A. 66m3 B. 84m3 C. 132m3 D. 168m3 E. 264m3 Detailed SolutionArea of trapezium = 1/2(a+b)h= 1/2(4 + 7)x4 = 22m2 volume = 22 x 6 = 132m3 |
|
23. |
![]() A water tank is made with a right-angled trapezium - shaped vertical cross-section so that when it is placed on sloping ground the top of the tank is level. The dimension are given in the diagram above A. 1/10 B. 1 C. 10 D. 100 E. 1000 Detailed Solution1m = 100cm, 1m3 = (100cm)3 = 106 cm3but 1000cm4 = 1liter. 106 cm3 = 1000liters. 1m3 = 1000liters. |
|
24. |
Evaluate log106 + log1045 - log1027 without using logarithm tables A. o B. 1 C. 1.1738 D. 1.3802 E. 10 Detailed Solutionlog106 + log1045 - log1027log10 \(\frac{6 \times 45}{27}\) = log102 x 5 log1010 = 1 |
|
25. |
Find the product xy if, x, 3/2, 6/7, y are in G.P A. 24/49 B. 4/7 C. 9/7 D. 7/4 E. 21/8 Detailed SolutionIn GP, when you are given three consecutive terms, say f, g, h, then\(f \times h = g^2\) Given: \(x, \frac{3}{2}, \frac{6}{7}, y\), then \(\frac{6x}{7} = (\frac{3}{2})^2 \implies \frac{6x}{7} = \frac{9}{4} ... (i)\) Also, \(\frac{3y}{2} = (\frac{6}{7})^2 \implies \frac{3y}{2} = \frac{36}{49} ... (ii)\) From \(\frac{6x}{7} = \frac{9}{4} \implies x = \frac{9 \times 7}{6 \times 4}\) \(x = \frac{21}{8}\) Also, \(\frac{3y}{2} = \frac{36}{49} \implies y = \frac{2 \times 36}{3 \times 49}\) = \(\frac{24}{49}\) \(xy = \frac{21}{8} \times \frac{24}{49} = \frac{9}{7}\) |
26. |
![]() In the diagram above, O is the center of the circle, BOC is a diameter and angle ADC is 37o A. 147o B. 127o C. 65o D. 53o E. 37o Detailed SolutionFrom the figure \(< ABC = < ADC = 37°\) (angles on the same segment)\(< BCA = 90°\) (angle in semi-circle) \(\therefore\) In \(\Delta ABC\), \(< ACB = 180° - (37° + 90°)\) = 53° |
|
27. |
Factorize 5y2 + 2y - 3a2 A. (5y - a) (y + 3a) B. (5y + a) (y - 3a) C. 5y2 + a (2y - 3a) D. (y - a) (5y + 3a) E. (y + a) (5y - 3a) Detailed Solution5y 2 + 5ay - 3ay - 3a 25y(y + a) - 3a(y + a) (y + a) (5y - 3a) |
|
28. |
![]() Which of the following is a correct method for constructing an angle of 60o at Q? A. I only B. II only C. III only D. I and II only E. II and III only |
B |
29. |
![]() IN the diagram above, LK/PQ, reflex angle KLM = 241° and ∠QPM = 89°. What is the value of ∠LMP? A. 30o B. 61o C. 89o D. 119o E. 150o Detailed SolutionProduce ML to R.From the figure < LRM = 89° (corresponding angles) In triangle LRM, < LMR = 180° - (61° + 89°) = 30° |
|
30. |
Abidjan is 4o west of Accra and on the same circle of latitude. If the radius of this circle of latitude is 6370km, how far is Abidjan west of Accra, correct to the nearest kilometer? [Take π = 22/7] A. 222km B. 445km C. 890km D. 5005km E. 10010km Detailed Solutionθ360 * 2πr = Rcos4o4360 * 400411
|