Year : 
1979
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

1 - 10 of 51 Questions

# Question Ans
1.

The mean of the numbers 1.2, 1.0, 0.9, 1.4, 0.8, 0.8, 1.2 and 1.1 is

A. 1.5

B. 0.8

C. 1.0

D. 1.02

E. 1.05

Detailed Solution

\(\frac{1.2 + 1.0 + 0.9 + 1.4 + 0.8 + 0.8 + 1.2}{8}\) = \(\frac{8.4}{8}\)

= 1.05
2.

\((1.28 \times 10^{4}) \div (6.4 \times 10^{2})\) equals

A. 2 x 10-5

B. 2 x 10-1

C. 2 x 101

D. 2 x 10-4

Detailed Solution

\((1.28 \times 10^{4}) \div (6.4 \times 10^{2})\)
= \(\frac{1.28 \times 10^{4}}{6.4 \times 10^{2}}\)
\(\equiv \frac{12.8 \times 10^{3}}{6.4 \times 10^{2}}\)
= \(2 \times 10^{1}\)
3.

If the value of \(\pi\) is taken to be \(\frac{22}{7}\), the area of a semi-circle of diameter 42m is

A. 5544m2

B. 1386m2

C. 132m2

D. 264m2

E. 693m2

Detailed Solution

\(\pi\) = \(\frac{22}{7}\), Diameter D = 42m

Area of a circle = \(\frac{\pi D^2}{4}\) when a diameter is given

area of a semicircle \(\frac{\pi D^2}{4}\) x \(\frac{1}{2}\)

= \(\frac{22}{7}\) x \(\frac{4262}{4}\) x \(\frac{1}{2}\)

= \(\frac{11}{7} \times 441\)

= 693m\(^{2}\)
4.

(3.2)2 - (1.8)2 equals

A. 7.0

B. 2.56

C. 13.48

D. 2.0

E. 0.07

Detailed Solution

(3.2)2 - (1.8)2 = (3.2 + 1.8)(3.2 - 1.8)

= 5 x 1.4

= 7
5.

In \(\bigtriangleup\)PQR, PQ = 10cm, QR = 8cm and RP = 6cm, the perpendicular RS is drawn from R to PQ. Find the length of RS

A. 4cm

B. 32cm

C. \(\frac{30}{7}\)

D. \(\frac{40}{7}\)

E. 4.8cm

Detailed Solution

Cos Q = \(\frac{r^2 + p^2 - q^2}{2rp}\)

= \(\frac{10^2 + 8^2 - 6^2}{2(10)(8)}\)

= \(\frac{164 - 36}{160}\)

= \(\frac{128}{160}\)

= 0.8

Q = Cos-1 o.8

= 37o x rep. from rt< RSQ, Let RS = x

\(\frac{x}{sin 37^o}\) = \(\frac{8}{sin 90^o}\)

but sin 90o = 1

x = 8 sin 37o

x = 4.8cm
6.

After getting a rise of 15%, a man's new monthly salary is N345. How much per month did he earn before the increase?

A. N330

B. N396.75

C. N300

D. N293.25

E. N360

Detailed Solution

Let x represent his monthly salary before increase 15% of

x = 345
% profit = (100 + 15)%
= 115%

\(\frac{115}{100}\)x = 345

115x = 34500

x = N300.00
7.

In base ten, the number 101101 (base 2) equals

A. 15

B. 4

C. 45

D. 32

E. 90

Detailed Solution

(101101)2 \(\begin{array}{c|c} 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^o\\ \hline 1 & 0 & 1 & 1 & 0 & 1\end{array}\)

= 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 2o

= 32 + 0 + 8 + 4 + 0 + 1

= (45)10
8.

The annul profits of a transport business were divided between the partners A and B in the ratio 3 : 5. If B received N3000 more than A, the total profit was

A. N5000

B. N1800

C. N12000

D. N24000

E. N8000

Detailed Solution

A : B = 3 : 5

Total ratio = 3 + 5 = 8

Let rept, the total profit, A receives \(\frac{3x}{8}\)

\(\frac{5x}{8}\) - \(\frac{3}{x}\) = 3000

\(\frac{5x}{8}\) - \(\frac{3x}{8}\) = 3000

= \(\frac{2x}{8}\)

= 3000

2x = 2400

x = 1200

N12,000
9.

X is directly proportional to y and inversely proportional to z. If x = 9 when y = 24 and z = 8, what is the value of x when y = 5 and z = 6?

A. \(\frac{5}{6}\)

B. 11

C. 3\(\frac{3}{5}\)

D. 2\(\frac{1}{2}\)

E. 1\(\frac{1}{5}\)

Detailed Solution

x \(\alpha\) y = x \(\alpha\) \(\frac{1}{z}\)

x \(\alpha\) \(\frac{1}{z}\)

x = k \(\frac{y}{z}\)

k = \(\frac{xz}{y}\) = \(\frac{9 \times 8}{24}\)

= 3

x = \(\frac{xz}{y}\)

= \(\frac{3 \times 5}{6}\)

= \(\frac{15}{6}\)

= \(\frac{5}{2}\)

= 2\(\frac{1}{2}\)
10.

The solution of the equation x2 - 2x = 8 is

A. x = 0 or 2

B. x = -2 or 4

C. x = 2

D. x = -4

E. x = 2 or 4

Detailed Solution

x2 - 2x = 8 = 8

x2 - 2x - 8 = 0

(x2 - 4x) + (2x - 8) = 0

When x + 2 = 0

x = -2, when x - 4 = 0

x = 4

-2 or 4
1.

The mean of the numbers 1.2, 1.0, 0.9, 1.4, 0.8, 0.8, 1.2 and 1.1 is

A. 1.5

B. 0.8

C. 1.0

D. 1.02

E. 1.05

Detailed Solution

\(\frac{1.2 + 1.0 + 0.9 + 1.4 + 0.8 + 0.8 + 1.2}{8}\) = \(\frac{8.4}{8}\)

= 1.05
2.

\((1.28 \times 10^{4}) \div (6.4 \times 10^{2})\) equals

A. 2 x 10-5

B. 2 x 10-1

C. 2 x 101

D. 2 x 10-4

Detailed Solution

\((1.28 \times 10^{4}) \div (6.4 \times 10^{2})\)
= \(\frac{1.28 \times 10^{4}}{6.4 \times 10^{2}}\)
\(\equiv \frac{12.8 \times 10^{3}}{6.4 \times 10^{2}}\)
= \(2 \times 10^{1}\)
3.

If the value of \(\pi\) is taken to be \(\frac{22}{7}\), the area of a semi-circle of diameter 42m is

A. 5544m2

B. 1386m2

C. 132m2

D. 264m2

E. 693m2

Detailed Solution

\(\pi\) = \(\frac{22}{7}\), Diameter D = 42m

Area of a circle = \(\frac{\pi D^2}{4}\) when a diameter is given

area of a semicircle \(\frac{\pi D^2}{4}\) x \(\frac{1}{2}\)

= \(\frac{22}{7}\) x \(\frac{4262}{4}\) x \(\frac{1}{2}\)

= \(\frac{11}{7} \times 441\)

= 693m\(^{2}\)
4.

(3.2)2 - (1.8)2 equals

A. 7.0

B. 2.56

C. 13.48

D. 2.0

E. 0.07

Detailed Solution

(3.2)2 - (1.8)2 = (3.2 + 1.8)(3.2 - 1.8)

= 5 x 1.4

= 7
5.

In \(\bigtriangleup\)PQR, PQ = 10cm, QR = 8cm and RP = 6cm, the perpendicular RS is drawn from R to PQ. Find the length of RS

A. 4cm

B. 32cm

C. \(\frac{30}{7}\)

D. \(\frac{40}{7}\)

E. 4.8cm

Detailed Solution

Cos Q = \(\frac{r^2 + p^2 - q^2}{2rp}\)

= \(\frac{10^2 + 8^2 - 6^2}{2(10)(8)}\)

= \(\frac{164 - 36}{160}\)

= \(\frac{128}{160}\)

= 0.8

Q = Cos-1 o.8

= 37o x rep. from rt< RSQ, Let RS = x

\(\frac{x}{sin 37^o}\) = \(\frac{8}{sin 90^o}\)

but sin 90o = 1

x = 8 sin 37o

x = 4.8cm
6.

After getting a rise of 15%, a man's new monthly salary is N345. How much per month did he earn before the increase?

A. N330

B. N396.75

C. N300

D. N293.25

E. N360

Detailed Solution

Let x represent his monthly salary before increase 15% of

x = 345
% profit = (100 + 15)%
= 115%

\(\frac{115}{100}\)x = 345

115x = 34500

x = N300.00
7.

In base ten, the number 101101 (base 2) equals

A. 15

B. 4

C. 45

D. 32

E. 90

Detailed Solution

(101101)2 \(\begin{array}{c|c} 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^o\\ \hline 1 & 0 & 1 & 1 & 0 & 1\end{array}\)

= 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 2o

= 32 + 0 + 8 + 4 + 0 + 1

= (45)10
8.

The annul profits of a transport business were divided between the partners A and B in the ratio 3 : 5. If B received N3000 more than A, the total profit was

A. N5000

B. N1800

C. N12000

D. N24000

E. N8000

Detailed Solution

A : B = 3 : 5

Total ratio = 3 + 5 = 8

Let rept, the total profit, A receives \(\frac{3x}{8}\)

\(\frac{5x}{8}\) - \(\frac{3}{x}\) = 3000

\(\frac{5x}{8}\) - \(\frac{3x}{8}\) = 3000

= \(\frac{2x}{8}\)

= 3000

2x = 2400

x = 1200

N12,000
9.

X is directly proportional to y and inversely proportional to z. If x = 9 when y = 24 and z = 8, what is the value of x when y = 5 and z = 6?

A. \(\frac{5}{6}\)

B. 11

C. 3\(\frac{3}{5}\)

D. 2\(\frac{1}{2}\)

E. 1\(\frac{1}{5}\)

Detailed Solution

x \(\alpha\) y = x \(\alpha\) \(\frac{1}{z}\)

x \(\alpha\) \(\frac{1}{z}\)

x = k \(\frac{y}{z}\)

k = \(\frac{xz}{y}\) = \(\frac{9 \times 8}{24}\)

= 3

x = \(\frac{xz}{y}\)

= \(\frac{3 \times 5}{6}\)

= \(\frac{15}{6}\)

= \(\frac{5}{2}\)

= 2\(\frac{1}{2}\)
10.

The solution of the equation x2 - 2x = 8 is

A. x = 0 or 2

B. x = -2 or 4

C. x = 2

D. x = -4

E. x = 2 or 4

Detailed Solution

x2 - 2x = 8 = 8

x2 - 2x - 8 = 0

(x2 - 4x) + (2x - 8) = 0

When x + 2 = 0

x = -2, when x - 4 = 0

x = 4

-2 or 4