Year : 
1993
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 48 Questions

# Question Ans
1.

S = {1, 2, 3, 4, 5, 6}, T = {2,4,5,7} and R = {1,4, 5}, and (S∩T) ∪ R

A. {1, 4, 5}

B. {2, 4, 5}

C. {1, 2, 4, 5}

D. {2, 3, 4, 5}

E. {1, 2, 3, 4, 5}

Detailed Solution

S = {1, 2, 3, 4, 5, 6}; T = {2, 4, 5, 7}; R = {1, 4, 5}
(S∩T) ∪ R = {2, 4, 5} ∪ {1, 4, 5}
= {1, 2, 4, 5}
2.

Simplify: \(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)

A. 7/30

B. 7/24

C. 9/25

D. 1/2

E. 18/25

Detailed Solution

\(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)
\(\frac{3}{4} \div \frac{5}{4} \times (\frac{9 - 4}{6})\)
= \(\frac{3}{4} \times \frac{4}{5} \times \frac{5}{6}\)
= \(\frac{1}{2}\)
3.

Solve the inequality: 3m + 3 > 9

A. m > 2

B. m > 3

C. m>4

D. m>6

E. m>12

Detailed Solution

3m + 3 > 9
3m > 9 - 3
3m > 6
m > 2
4.

Convert 89\(_{10}\) to a number in base two.

A. 1101001

B. 1011001

C. 1001101

D. 101101

E. 11001

Detailed Solution

\(89_{10}\)
\(89_{10} = 1011001_{2}\)
5.

A stick of length 1.75m was measured by a boy as 1.80m. Find the percentage error in his measurement

A. 27/9%

B. 26/7%

C. 5%

D. 277/9%

E. 284/7%.

Detailed Solution

% Error =
Error /Actual measurement
x
100/1


=
0.05/1.80
6.

The nth term of a sequence is given by (-1)\(^{n-2}\) x 2\(^{n-1}\). Find the sum of the second and third terms.

A. -2

B. 1

C. 2

D. 6

E. 12

Detailed Solution

when n = 2
(-1)\(^{n-2}\) 2\(^{n+1}\) = 2
When n = 3
(-1)\(^{n-2}\) 2\(^{n+1}\) = -4
Sum = 2 - 4 = -2
7.

Simplify: \(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)

A. 1/4

B. 0

C. 1

D. 2

E. 4

Detailed Solution

\(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)
= \(\frac{16^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\)
= \(\frac{(2^4)^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\)
= \(\frac{2^3}{4}\)
= 2
8.

Simplify: \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\)

A. 1/6

B. 3/8

C. 1/2

D. 3/4

E. 6

Detailed Solution

\(\frac{\log \sqrt{27}}{\log 81}\)
= \(\frac{\log \sqrt{3^3}}{\log 3^4}\)
= \(\frac{\log 3^{\frac{3}{2}}}{\log 3^4}\)
= \(\frac{\frac{3}{2} \log 3}{4 \log 3}\)
= \(\frac{\frac{3}{2}}{4}\)
= \(\frac{3}{8}\)
9.

Factorize the expression 2s\(^2\) - 3st - 2t\(^2\).

A. (2s - t)(s + 2t)

B. (2s + t)(s - 2t)

C. (s + t)(2s - 1)

D. (2s + t)(s -t)

E. (2s + t)(s + 2t)

Detailed Solution

2s\(^2\) - 3st - 2t\(^2\)
= 2s\(^2\) - 4st + st - 2t\(^2\)
= 2s(s - 2t) + t(s - 2t)
= (2s + t)(s - 2t)
10.

Solve the equation x\(^2\) - 2x - 3 = 0

A. (-3, 1)

B. (-1, -3)

C. (3,1)

D. (43, 0)

E. (-1, 3).

Detailed Solution

x\(^2\) - 2x - 3 = 0
x\(^2\) - 3x + x - 3 = 0
x(x - 3) + 1(x - 3) = 0
(x + 1)(x - 3) = 0
x = (-1, 3)
1.

S = {1, 2, 3, 4, 5, 6}, T = {2,4,5,7} and R = {1,4, 5}, and (S∩T) ∪ R

A. {1, 4, 5}

B. {2, 4, 5}

C. {1, 2, 4, 5}

D. {2, 3, 4, 5}

E. {1, 2, 3, 4, 5}

Detailed Solution

S = {1, 2, 3, 4, 5, 6}; T = {2, 4, 5, 7}; R = {1, 4, 5}
(S∩T) ∪ R = {2, 4, 5} ∪ {1, 4, 5}
= {1, 2, 4, 5}
2.

Simplify: \(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)

A. 7/30

B. 7/24

C. 9/25

D. 1/2

E. 18/25

Detailed Solution

\(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)
\(\frac{3}{4} \div \frac{5}{4} \times (\frac{9 - 4}{6})\)
= \(\frac{3}{4} \times \frac{4}{5} \times \frac{5}{6}\)
= \(\frac{1}{2}\)
3.

Solve the inequality: 3m + 3 > 9

A. m > 2

B. m > 3

C. m>4

D. m>6

E. m>12

Detailed Solution

3m + 3 > 9
3m > 9 - 3
3m > 6
m > 2
4.

Convert 89\(_{10}\) to a number in base two.

A. 1101001

B. 1011001

C. 1001101

D. 101101

E. 11001

Detailed Solution

\(89_{10}\)
\(89_{10} = 1011001_{2}\)
5.

A stick of length 1.75m was measured by a boy as 1.80m. Find the percentage error in his measurement

A. 27/9%

B. 26/7%

C. 5%

D. 277/9%

E. 284/7%.

Detailed Solution

% Error =
Error /Actual measurement
x
100/1


=
0.05/1.80
6.

The nth term of a sequence is given by (-1)\(^{n-2}\) x 2\(^{n-1}\). Find the sum of the second and third terms.

A. -2

B. 1

C. 2

D. 6

E. 12

Detailed Solution

when n = 2
(-1)\(^{n-2}\) 2\(^{n+1}\) = 2
When n = 3
(-1)\(^{n-2}\) 2\(^{n+1}\) = -4
Sum = 2 - 4 = -2
7.

Simplify: \(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)

A. 1/4

B. 0

C. 1

D. 2

E. 4

Detailed Solution

\(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)
= \(\frac{16^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\)
= \(\frac{(2^4)^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\)
= \(\frac{2^3}{4}\)
= 2
8.

Simplify: \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\)

A. 1/6

B. 3/8

C. 1/2

D. 3/4

E. 6

Detailed Solution

\(\frac{\log \sqrt{27}}{\log 81}\)
= \(\frac{\log \sqrt{3^3}}{\log 3^4}\)
= \(\frac{\log 3^{\frac{3}{2}}}{\log 3^4}\)
= \(\frac{\frac{3}{2} \log 3}{4 \log 3}\)
= \(\frac{\frac{3}{2}}{4}\)
= \(\frac{3}{8}\)
9.

Factorize the expression 2s\(^2\) - 3st - 2t\(^2\).

A. (2s - t)(s + 2t)

B. (2s + t)(s - 2t)

C. (s + t)(2s - 1)

D. (2s + t)(s -t)

E. (2s + t)(s + 2t)

Detailed Solution

2s\(^2\) - 3st - 2t\(^2\)
= 2s\(^2\) - 4st + st - 2t\(^2\)
= 2s(s - 2t) + t(s - 2t)
= (2s + t)(s - 2t)
10.

Solve the equation x\(^2\) - 2x - 3 = 0

A. (-3, 1)

B. (-1, -3)

C. (3,1)

D. (43, 0)

E. (-1, 3).

Detailed Solution

x\(^2\) - 2x - 3 = 0
x\(^2\) - 3x + x - 3 = 0
x(x - 3) + 1(x - 3) = 0
(x + 1)(x - 3) = 0
x = (-1, 3)