1 - 10 of 48 Questions
# | Question | Ans |
---|---|---|
1. |
S = {1, 2, 3, 4, 5, 6}, T = {2,4,5,7} and R = {1,4, 5}, and (S∩T) ∪ R A. {1, 4, 5} B. {2, 4, 5} C. {1, 2, 4, 5} D. {2, 3, 4, 5} E. {1, 2, 3, 4, 5} Detailed SolutionS = {1, 2, 3, 4, 5, 6}; T = {2, 4, 5, 7}; R = {1, 4, 5}(S∩T) ∪ R = {2, 4, 5} ∪ {1, 4, 5} = {1, 2, 4, 5} |
|
2. |
Simplify: \(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\) A. 7/30 B. 7/24 C. 9/25 D. 1/2 E. 18/25 Detailed Solution\(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)\(\frac{3}{4} \div \frac{5}{4} \times (\frac{9 - 4}{6})\) = \(\frac{3}{4} \times \frac{4}{5} \times \frac{5}{6}\) = \(\frac{1}{2}\) |
|
3. |
Solve the inequality: 3m + 3 > 9 A. m > 2 B. m > 3 C. m>4 D. m>6 E. m>12 Detailed Solution3m + 3 > 93m > 9 - 3 3m > 6 m > 2 |
|
4. |
Convert 89\(_{10}\) to a number in base two. A. 1101001 B. 1011001 C. 1001101 D. 101101 E. 11001 Detailed Solution\(89_{10}\)\(89_{10} = 1011001_{2}\) |
|
5. |
A stick of length 1.75m was measured by a boy as 1.80m. Find the percentage error in his measurement A. 27/9% B. 26/7% C. 5% D. 277/9% E. 284/7%. Detailed Solution% Error = Error Actual measurement x 1001 =
0.051.80
|
|
6. |
The nth term of a sequence is given by (-1)\(^{n-2}\) x 2\(^{n-1}\). Find the sum of the second and third terms. A. -2 B. 1 C. 2 D. 6 E. 12 Detailed Solutionwhen n = 2(-1)\(^{n-2}\) 2\(^{n+1}\) = 2 When n = 3 (-1)\(^{n-2}\) 2\(^{n+1}\) = -4 Sum = 2 - 4 = -2 |
|
7. |
Simplify: \(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\) A. 1/4 B. 0 C. 1 D. 2 E. 4 Detailed Solution\(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)= \(\frac{16^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\) = \(\frac{(2^4)^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\) = \(\frac{2^3}{4}\) = 2 |
|
8. |
Simplify: \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\) A. 1/6 B. 3/8 C. 1/2 D. 3/4 E. 6 Detailed Solution\(\frac{\log \sqrt{27}}{\log 81}\)= \(\frac{\log \sqrt{3^3}}{\log 3^4}\) = \(\frac{\log 3^{\frac{3}{2}}}{\log 3^4}\) = \(\frac{\frac{3}{2} \log 3}{4 \log 3}\) = \(\frac{\frac{3}{2}}{4}\) = \(\frac{3}{8}\) |
|
9. |
Factorize the expression 2s\(^2\) - 3st - 2t\(^2\). A. (2s - t)(s + 2t) B. (2s + t)(s - 2t) C. (s + t)(2s - 1) D. (2s + t)(s -t) E. (2s + t)(s + 2t) Detailed Solution2s\(^2\) - 3st - 2t\(^2\)= 2s\(^2\) - 4st + st - 2t\(^2\) = 2s(s - 2t) + t(s - 2t) = (2s + t)(s - 2t) |
|
10. |
Solve the equation x\(^2\) - 2x - 3 = 0 A. (-3, 1) B. (-1, -3) C. (3,1) D. (43, 0) E. (-1, 3). Detailed Solutionx\(^2\) - 2x - 3 = 0x\(^2\) - 3x + x - 3 = 0 x(x - 3) + 1(x - 3) = 0 (x + 1)(x - 3) = 0 x = (-1, 3) |
1. |
S = {1, 2, 3, 4, 5, 6}, T = {2,4,5,7} and R = {1,4, 5}, and (S∩T) ∪ R A. {1, 4, 5} B. {2, 4, 5} C. {1, 2, 4, 5} D. {2, 3, 4, 5} E. {1, 2, 3, 4, 5} Detailed SolutionS = {1, 2, 3, 4, 5, 6}; T = {2, 4, 5, 7}; R = {1, 4, 5}(S∩T) ∪ R = {2, 4, 5} ∪ {1, 4, 5} = {1, 2, 4, 5} |
|
2. |
Simplify: \(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\) A. 7/30 B. 7/24 C. 9/25 D. 1/2 E. 18/25 Detailed Solution\(\frac{3}{4} \div 1\frac{1}{4} \times (1\frac{1}{2} - \frac{2}{3})\)\(\frac{3}{4} \div \frac{5}{4} \times (\frac{9 - 4}{6})\) = \(\frac{3}{4} \times \frac{4}{5} \times \frac{5}{6}\) = \(\frac{1}{2}\) |
|
3. |
Solve the inequality: 3m + 3 > 9 A. m > 2 B. m > 3 C. m>4 D. m>6 E. m>12 Detailed Solution3m + 3 > 93m > 9 - 3 3m > 6 m > 2 |
|
4. |
Convert 89\(_{10}\) to a number in base two. A. 1101001 B. 1011001 C. 1001101 D. 101101 E. 11001 Detailed Solution\(89_{10}\)\(89_{10} = 1011001_{2}\) |
|
5. |
A stick of length 1.75m was measured by a boy as 1.80m. Find the percentage error in his measurement A. 27/9% B. 26/7% C. 5% D. 277/9% E. 284/7%. Detailed Solution% Error = Error Actual measurement x 1001 =
0.051.80
|
6. |
The nth term of a sequence is given by (-1)\(^{n-2}\) x 2\(^{n-1}\). Find the sum of the second and third terms. A. -2 B. 1 C. 2 D. 6 E. 12 Detailed Solutionwhen n = 2(-1)\(^{n-2}\) 2\(^{n+1}\) = 2 When n = 3 (-1)\(^{n-2}\) 2\(^{n+1}\) = -4 Sum = 2 - 4 = -2 |
|
7. |
Simplify: \(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\) A. 1/4 B. 0 C. 1 D. 2 E. 4 Detailed Solution\(\frac{4^{-\frac{1}{2}} \times 16^{\frac{3}{4}}}{4^{\frac{1}{2}}}\)= \(\frac{16^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\) = \(\frac{(2^4)^{\frac{3}{4}}}{4^{\frac{1}{2}} \times 4^{\frac{1}{2}}}\) = \(\frac{2^3}{4}\) = 2 |
|
8. |
Simplify: \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\) A. 1/6 B. 3/8 C. 1/2 D. 3/4 E. 6 Detailed Solution\(\frac{\log \sqrt{27}}{\log 81}\)= \(\frac{\log \sqrt{3^3}}{\log 3^4}\) = \(\frac{\log 3^{\frac{3}{2}}}{\log 3^4}\) = \(\frac{\frac{3}{2} \log 3}{4 \log 3}\) = \(\frac{\frac{3}{2}}{4}\) = \(\frac{3}{8}\) |
|
9. |
Factorize the expression 2s\(^2\) - 3st - 2t\(^2\). A. (2s - t)(s + 2t) B. (2s + t)(s - 2t) C. (s + t)(2s - 1) D. (2s + t)(s -t) E. (2s + t)(s + 2t) Detailed Solution2s\(^2\) - 3st - 2t\(^2\)= 2s\(^2\) - 4st + st - 2t\(^2\) = 2s(s - 2t) + t(s - 2t) = (2s + t)(s - 2t) |
|
10. |
Solve the equation x\(^2\) - 2x - 3 = 0 A. (-3, 1) B. (-1, -3) C. (3,1) D. (43, 0) E. (-1, 3). Detailed Solutionx\(^2\) - 2x - 3 = 0x\(^2\) - 3x + x - 3 = 0 x(x - 3) + 1(x - 3) = 0 (x + 1)(x - 3) = 0 x = (-1, 3) |