Year : 
1991
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 48 Questions

# Question Ans
21.

Find the range of values of x which satisfy the inequality \(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\) < 1

A. x < \(\frac{12}{13}\)

B. x < 13

C. x < 9

D. \(\frac{13}{12}\)

Detailed Solution

\(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\)< 1

= \(\frac{6x + 4x + 3x < 12}{12}\)

i.e. 13 x < 12 = x < \(\frac{12}{13}\)
22.

Find the positive number n, such that thrice its square is equal to twelve times the number

A. 1

B. 2

C. 3

D. 4

Detailed Solution

3n2 = 12n

= 3n2 - 12n = 0

= 3n(n - 4) = 0

∴ n = 4
23.

What is the nth term of the progression 27, 9, 3,......?

A. 27\(\frac{1}{3}\) n - 1

B. 3n + 2

C. 27 + 18(n - 1)

D. 27 + 6(n - 1)

Detailed Solution

Given 27, 9, 3,......this is a G.P

r = \(\frac{9}{27}\)

= \(\frac{1}{3}\)

T = arn - 1

= 27\(\frac{1}{3}\) n - 1
24.

Solve the equation (x - 2) (x - 3) = 12

A. 2, 3

B. 3, 6

C. -1, 6

D. 1, -6

Detailed Solution

(x - 2) (x - 3) = 12

x2 - 3x - 2x + 6 = 12

x2 - 5x - 6 = 0

(x +1)(x - 6) = 0

x = -1 or 6
25.

Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

A. -2x - 2\(\sqrt{x (1 + x)}\)

B. 1 + 2x + 2\(\sqrt{x (1 + x)}\)

C. \(\sqrt{x (1 + x)}\)

D. 1 + 2x - 2\(\sqrt{x (1 + x)}\)

Detailed Solution

\(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)
= \((\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}) (\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}})\)
= \(\frac{(1 + x) + \sqrt{x(1 + x)} + \sqrt{x(1 + x)} + x}{(1 + x) - x}\)
= \(\frac{1 + 2x + 2\sqrt{x(1 + x)}}{1}\)
= \(1 + 2x + 2\sqrt{x(1 + x)}\)
26.

Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)

A. (x2 - 1)-\(\frac{1}{2}\)

B. (x2 - 1)1

C. (x2 - 1)

D. (x2 - 1)-1

Detailed Solution

x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\) = \(\frac{x^2}{(x^2 - 1)^\frac{1}{2}}\) - \(\frac{(x^2 - 1)^\frac{1}{2}}{1}\)

= \(\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}}\)

= \(\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}}\)

= (x2 - 1)-\(\frac{1}{2}\)
27.

Find the gradient of the line passing through the points (-2, 0) and (0, -4)

A. 2

B. -4

C. -2

D. 4

Detailed Solution

Given (-2, 0) and (0, -4)

Gradient = \(\frac{-4 - 0}{0 - (-2)}\)

= \(\frac{-4}{2}\)

= -2
28.

At what value of x is the function y = x2 - 2x - 3 minimum?

A. 1

B. -1

C. -4

D. 4

Detailed Solution

For y = ax2 - bx + c for minimum y

\(\frac{dy}{dx}\) = 2x - 2

= \(\frac{dy}{dx}\) = 0

∴ 2x - 2 = 0

x = 1
29.

Find the sum of the first 20 terms in an arithmetic progression whose first term is 7 and last term is 117.

A. 2480

B. 1240

C. 620

D. 124

Detailed Solution

Given the first and last term of an A.P, the sum of the terms is given by
\(S_{n} = \frac{n}{2} [a + l]\)
where a = first term; l = last term and n = number of terms.
\(\therefore S_{20} = \frac{20}{2} [7 + 117]\)
= \(10 (124)\)
= 1240
30.

The area of a square is 144 sq cm. Find the length of its diagonal

A. 11\(\sqrt{3cm}\)

B. 12cm

C. 12\(\sqrt{2cm}\)

D. 13cm

Detailed Solution

BD = \(\sqrt{x^2 + x^2}\)

= \(\sqrt{12^2 + 12^2}\)

= \(\sqrt{144 + 144}\)

= 2(144)

= 12\(\sqrt{2cm}\)
21.

Find the range of values of x which satisfy the inequality \(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\) < 1

A. x < \(\frac{12}{13}\)

B. x < 13

C. x < 9

D. \(\frac{13}{12}\)

Detailed Solution

\(\frac{x}{2}\) + \(\frac{x}{3}\) + \(\frac{x}{4}\)< 1

= \(\frac{6x + 4x + 3x < 12}{12}\)

i.e. 13 x < 12 = x < \(\frac{12}{13}\)
22.

Find the positive number n, such that thrice its square is equal to twelve times the number

A. 1

B. 2

C. 3

D. 4

Detailed Solution

3n2 = 12n

= 3n2 - 12n = 0

= 3n(n - 4) = 0

∴ n = 4
23.

What is the nth term of the progression 27, 9, 3,......?

A. 27\(\frac{1}{3}\) n - 1

B. 3n + 2

C. 27 + 18(n - 1)

D. 27 + 6(n - 1)

Detailed Solution

Given 27, 9, 3,......this is a G.P

r = \(\frac{9}{27}\)

= \(\frac{1}{3}\)

T = arn - 1

= 27\(\frac{1}{3}\) n - 1
24.

Solve the equation (x - 2) (x - 3) = 12

A. 2, 3

B. 3, 6

C. -1, 6

D. 1, -6

Detailed Solution

(x - 2) (x - 3) = 12

x2 - 3x - 2x + 6 = 12

x2 - 5x - 6 = 0

(x +1)(x - 6) = 0

x = -1 or 6
25.

Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)

A. -2x - 2\(\sqrt{x (1 + x)}\)

B. 1 + 2x + 2\(\sqrt{x (1 + x)}\)

C. \(\sqrt{x (1 + x)}\)

D. 1 + 2x - 2\(\sqrt{x (1 + x)}\)

Detailed Solution

\(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)
= \((\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}) (\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}})\)
= \(\frac{(1 + x) + \sqrt{x(1 + x)} + \sqrt{x(1 + x)} + x}{(1 + x) - x}\)
= \(\frac{1 + 2x + 2\sqrt{x(1 + x)}}{1}\)
= \(1 + 2x + 2\sqrt{x(1 + x)}\)
26.

Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)

A. (x2 - 1)-\(\frac{1}{2}\)

B. (x2 - 1)1

C. (x2 - 1)

D. (x2 - 1)-1

Detailed Solution

x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\) = \(\frac{x^2}{(x^2 - 1)^\frac{1}{2}}\) - \(\frac{(x^2 - 1)^\frac{1}{2}}{1}\)

= \(\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}}\)

= \(\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}}\)

= (x2 - 1)-\(\frac{1}{2}\)
27.

Find the gradient of the line passing through the points (-2, 0) and (0, -4)

A. 2

B. -4

C. -2

D. 4

Detailed Solution

Given (-2, 0) and (0, -4)

Gradient = \(\frac{-4 - 0}{0 - (-2)}\)

= \(\frac{-4}{2}\)

= -2
28.

At what value of x is the function y = x2 - 2x - 3 minimum?

A. 1

B. -1

C. -4

D. 4

Detailed Solution

For y = ax2 - bx + c for minimum y

\(\frac{dy}{dx}\) = 2x - 2

= \(\frac{dy}{dx}\) = 0

∴ 2x - 2 = 0

x = 1
29.

Find the sum of the first 20 terms in an arithmetic progression whose first term is 7 and last term is 117.

A. 2480

B. 1240

C. 620

D. 124

Detailed Solution

Given the first and last term of an A.P, the sum of the terms is given by
\(S_{n} = \frac{n}{2} [a + l]\)
where a = first term; l = last term and n = number of terms.
\(\therefore S_{20} = \frac{20}{2} [7 + 117]\)
= \(10 (124)\)
= 1240
30.

The area of a square is 144 sq cm. Find the length of its diagonal

A. 11\(\sqrt{3cm}\)

B. 12cm

C. 12\(\sqrt{2cm}\)

D. 13cm

Detailed Solution

BD = \(\sqrt{x^2 + x^2}\)

= \(\sqrt{12^2 + 12^2}\)

= \(\sqrt{144 + 144}\)

= 2(144)

= 12\(\sqrt{2cm}\)