Year : 
1991
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

11 - 20 of 48 Questions

# Question Ans
11.

Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

A. 5 - 2\(\sqrt{6}\)

B. 5 + 2\(\sqrt{6}\)

C. 5\(\sqrt{6}\)

D. 5

Detailed Solution

\(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

= \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\) x \(\frac{3\sqrt{2} + 2 \sqrt{3}}{3\sqrt{2} - 2 \sqrt{3}}\)

\(\frac{4(3) + 9(2) + 2(6) \sqrt{6}}{9(2) - 4(3)}\)

\(\frac{12 + 18 + 12\sqrt{6}}{1`8 - 12}\)

= \(\frac{30 + 12\sqrt{6}}{6}\)

= 5 + 2\(\sqrt{6}\)
12.

Multiply (x2 - 3x + 1) by (x - a)

A. x3 - (3 + a) x2 + (1 + 3a)x - a

B. x3 - (3 - a)x2 + 3ax - a

C. x3 - (3 - a)x2 - (1 = 3a) - a

D. x3 + (3 - a)x2 + (1 + 3a) - a

Detailed Solution

(x2 - 3x + 1)(x - a) = x3 - 3x2 + x - ax2 + 3ax - a

= x3 - (3 + a) x2 + (1 + 3a)x - a
13.

Evaluate \(\frac{xy^2 - x^2y}{x^2 - xy^1}\) When x = -2 and y = 3

A. 3

B. -\(\frac{3}{5}\)

C. \(\frac{3}{5}\)

D. -3

Detailed Solution

\(\frac{xy^2 - x^2y}{x^2 - xy^1}\)

= \(\frac{(-2)(3)^2 - (-2)^2(3)}{(-2)^2 - (-2)(3)}\)

= \(\frac{-30}{10}\)

= -3
14.

A car travels from calabar to Enugu, a distance of P km with an average speed of U km per hour and continues to benin, a distance of Q km, with an average speed of Wkm per hour. Find its average speed from Calabar to Benin

A. \(\frac{(p + q)}{pw + qu}\)

B. \(\frac{uw(p + q)}{pw + qu}\)

C. \(\frac{uw(p + q)}{pw}\)

D. \(\frac{uw}{pw + qu}\)

Detailed Solution

Average speed = \(\frac{\text{total Distance}}{\text{Total Time}\)

from Calabar to Enugu in time t1, hence

t1 = \(\frac{P}{U}\) also from Enugu to Benin

t2 \(\frac{q}{w}\)

Av. speed = \(\frac{p + q}{t_1 + t_2}

= \(\frac{p + q}{\frac{p}{u} + \frac{q}{w}\)

= p + q x \(\frac{uw}{pw + qu}\)

= \(\frac{uw(p + q)}{pw + qu}\)
15.

If w varies inversely as \(\frac{uv}{u + v}\) and is equal to 8 when

u = 2 and v = 6, find a relationship between u, v, w.

A. uvw = 16(u + v)

B. 16ur = 3w(u + v)

C. uvw = 12(u + v)

D. 12uvw = u + v

Detailed Solution

W \(\alpha\) \(\frac{\frac{1}{uv}}{u + v}\)

∴ w = \(\frac{\frac{k}{uv}}{u + v}\)

= \(\frac{k(u + v)}{uv}\)

w = \(\frac{k(u + v)}{uv}\)

w = 8, u = 2 and v = 6

8 = \(\frac{k(2 + 6)}{2(6)}\)

= \(\frac{k(8)}{12}\)

k = 12
i.e 12 ( u + v) = uwv
16.

If g(x) = x2 + 3x + 4, find g(x + 1) - g(x)

A. (x + 2)

B. 2(x + 2)

C. (2x + 1)

D. (x2 + 4)

Detailed Solution

g(x) = x2 + 3x + 4

= g(x + 1) = (x + 1)^2 + 3(x + 1) + 4

= x2 + 1 + 2x + 3x + 3 + 4

= x2 + 5x + 8

g(x + 1) - g(x) = x2 + 5x + 8 - (x2 + 3x + 4)

= x2 + 5x + 8 - x2 + 3x + 4

= 2x + 4

= 2(x + 2)
17.

Factorize m3 - 2m2 - m + 2

A. (m2 + 1)(m - 2)

B. (m - 1)(m + 1)(m + 2)

C. (m - 2)(m + 1)(m - 1)

D. (m2 + 2)(m - 1)

Detailed Solution

m3 - 2m2 - m + 2

Let f(m) = m3 - 2m2 - m2 + 2

= f(1)

= 1 - 2 - 2 + 2 = 0

∴ m - 1 is factor \(\frac{m^3 - 2m^2 - m^2 + 2}{m - 1}\)

= m2 - m - 2

= (m - 1)m2 - m - 2

= (m - 1)(m + 1)(m - 2)
18.

Factorize 1 - (a - b)2

A. (1 - a - b)(1 - a + b)

B. (1 + a - b)(1 - a + b)

C. (1 - a + b)(1 - a + b)

D. (1 + a + b)(1 + a + b)

Detailed Solution

1 - (a - b)2 = [1 + (a - b)][1 - a + b]

= (1 + a - b)(1 - a + b)
19.

Which of the following is a factor of rs + tr - pt - ps?

A. (p - s)

B. (s - p)

C. r - p)

D. r + p)

Detailed Solution

rs + tr - pt - ps = rs - ps - tr - pt

= (r - p)s + (r - p)t

= (r - p)(s + t),

hence r - p is a factor
20.

Find the two values of y which satisfy the simultaneous equation 3x + y = 8, x\(^2\) + xy = 6.

A. -1 and 5

B. -5 and 1

C. 1 and 5

D. 1 and 1

Detailed Solution

\(3x + y = 8 ... (i)\)
\(x^{2} + xy = 6 ... (ii)\)
From (i), \(y = 8 - 3x\)
From (ii), \(xy = 6 - x^{2} \implies y = \frac{6 - x^{2}}{x}\)
Equating the two values of y, we have
\(8 - 3x = \frac{6 - x^{2}}{x} \implies x(8 - 3x) = 6 - x^{2}\)
\(8x - 3x^{2} = 6 - x^{2} \implies 6 - x^{2} - 8x + 3x^{2} = 0\)
\(2x^{2} - 8x + 6 = 0\)
\(x^{2} - 4x + 3 = 0\)
\(x^{2} - 3x - x + 3 = 0 \implies x(x - 3) - 1(x - 3) = 0\)
\((x - 1)(x - 3) = 0 \therefore \text{x = 1 or 3}\)
\(y = 8 - 3x \)
When x = 1, \(y = 8 - 3(1) = 5\)
When x = 3, \(y = 8 - 3(3) = -1\)
\(\therefore \text{y = -1 or 5}\)
11.

Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

A. 5 - 2\(\sqrt{6}\)

B. 5 + 2\(\sqrt{6}\)

C. 5\(\sqrt{6}\)

D. 5

Detailed Solution

\(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)

= \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\) x \(\frac{3\sqrt{2} + 2 \sqrt{3}}{3\sqrt{2} - 2 \sqrt{3}}\)

\(\frac{4(3) + 9(2) + 2(6) \sqrt{6}}{9(2) - 4(3)}\)

\(\frac{12 + 18 + 12\sqrt{6}}{1`8 - 12}\)

= \(\frac{30 + 12\sqrt{6}}{6}\)

= 5 + 2\(\sqrt{6}\)
12.

Multiply (x2 - 3x + 1) by (x - a)

A. x3 - (3 + a) x2 + (1 + 3a)x - a

B. x3 - (3 - a)x2 + 3ax - a

C. x3 - (3 - a)x2 - (1 = 3a) - a

D. x3 + (3 - a)x2 + (1 + 3a) - a

Detailed Solution

(x2 - 3x + 1)(x - a) = x3 - 3x2 + x - ax2 + 3ax - a

= x3 - (3 + a) x2 + (1 + 3a)x - a
13.

Evaluate \(\frac{xy^2 - x^2y}{x^2 - xy^1}\) When x = -2 and y = 3

A. 3

B. -\(\frac{3}{5}\)

C. \(\frac{3}{5}\)

D. -3

Detailed Solution

\(\frac{xy^2 - x^2y}{x^2 - xy^1}\)

= \(\frac{(-2)(3)^2 - (-2)^2(3)}{(-2)^2 - (-2)(3)}\)

= \(\frac{-30}{10}\)

= -3
14.

A car travels from calabar to Enugu, a distance of P km with an average speed of U km per hour and continues to benin, a distance of Q km, with an average speed of Wkm per hour. Find its average speed from Calabar to Benin

A. \(\frac{(p + q)}{pw + qu}\)

B. \(\frac{uw(p + q)}{pw + qu}\)

C. \(\frac{uw(p + q)}{pw}\)

D. \(\frac{uw}{pw + qu}\)

Detailed Solution

Average speed = \(\frac{\text{total Distance}}{\text{Total Time}\)

from Calabar to Enugu in time t1, hence

t1 = \(\frac{P}{U}\) also from Enugu to Benin

t2 \(\frac{q}{w}\)

Av. speed = \(\frac{p + q}{t_1 + t_2}

= \(\frac{p + q}{\frac{p}{u} + \frac{q}{w}\)

= p + q x \(\frac{uw}{pw + qu}\)

= \(\frac{uw(p + q)}{pw + qu}\)
15.

If w varies inversely as \(\frac{uv}{u + v}\) and is equal to 8 when

u = 2 and v = 6, find a relationship between u, v, w.

A. uvw = 16(u + v)

B. 16ur = 3w(u + v)

C. uvw = 12(u + v)

D. 12uvw = u + v

Detailed Solution

W \(\alpha\) \(\frac{\frac{1}{uv}}{u + v}\)

∴ w = \(\frac{\frac{k}{uv}}{u + v}\)

= \(\frac{k(u + v)}{uv}\)

w = \(\frac{k(u + v)}{uv}\)

w = 8, u = 2 and v = 6

8 = \(\frac{k(2 + 6)}{2(6)}\)

= \(\frac{k(8)}{12}\)

k = 12
i.e 12 ( u + v) = uwv
16.

If g(x) = x2 + 3x + 4, find g(x + 1) - g(x)

A. (x + 2)

B. 2(x + 2)

C. (2x + 1)

D. (x2 + 4)

Detailed Solution

g(x) = x2 + 3x + 4

= g(x + 1) = (x + 1)^2 + 3(x + 1) + 4

= x2 + 1 + 2x + 3x + 3 + 4

= x2 + 5x + 8

g(x + 1) - g(x) = x2 + 5x + 8 - (x2 + 3x + 4)

= x2 + 5x + 8 - x2 + 3x + 4

= 2x + 4

= 2(x + 2)
17.

Factorize m3 - 2m2 - m + 2

A. (m2 + 1)(m - 2)

B. (m - 1)(m + 1)(m + 2)

C. (m - 2)(m + 1)(m - 1)

D. (m2 + 2)(m - 1)

Detailed Solution

m3 - 2m2 - m + 2

Let f(m) = m3 - 2m2 - m2 + 2

= f(1)

= 1 - 2 - 2 + 2 = 0

∴ m - 1 is factor \(\frac{m^3 - 2m^2 - m^2 + 2}{m - 1}\)

= m2 - m - 2

= (m - 1)m2 - m - 2

= (m - 1)(m + 1)(m - 2)
18.

Factorize 1 - (a - b)2

A. (1 - a - b)(1 - a + b)

B. (1 + a - b)(1 - a + b)

C. (1 - a + b)(1 - a + b)

D. (1 + a + b)(1 + a + b)

Detailed Solution

1 - (a - b)2 = [1 + (a - b)][1 - a + b]

= (1 + a - b)(1 - a + b)
19.

Which of the following is a factor of rs + tr - pt - ps?

A. (p - s)

B. (s - p)

C. r - p)

D. r + p)

Detailed Solution

rs + tr - pt - ps = rs - ps - tr - pt

= (r - p)s + (r - p)t

= (r - p)(s + t),

hence r - p is a factor
20.

Find the two values of y which satisfy the simultaneous equation 3x + y = 8, x\(^2\) + xy = 6.

A. -1 and 5

B. -5 and 1

C. 1 and 5

D. 1 and 1

Detailed Solution

\(3x + y = 8 ... (i)\)
\(x^{2} + xy = 6 ... (ii)\)
From (i), \(y = 8 - 3x\)
From (ii), \(xy = 6 - x^{2} \implies y = \frac{6 - x^{2}}{x}\)
Equating the two values of y, we have
\(8 - 3x = \frac{6 - x^{2}}{x} \implies x(8 - 3x) = 6 - x^{2}\)
\(8x - 3x^{2} = 6 - x^{2} \implies 6 - x^{2} - 8x + 3x^{2} = 0\)
\(2x^{2} - 8x + 6 = 0\)
\(x^{2} - 4x + 3 = 0\)
\(x^{2} - 3x - x + 3 = 0 \implies x(x - 3) - 1(x - 3) = 0\)
\((x - 1)(x - 3) = 0 \therefore \text{x = 1 or 3}\)
\(y = 8 - 3x \)
When x = 1, \(y = 8 - 3(1) = 5\)
When x = 3, \(y = 8 - 3(3) = -1\)
\(\therefore \text{y = -1 or 5}\)