Year : 
2002
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

31 - 40 of 49 Questions

# Question Ans
31.

Simplify \(\frac{2^{\frac{1}{2}}\times 8^{\frac{1}{2}}}{4}\)

A. 1

B. 2

C. 4

D. 16

Detailed Solution

\(\frac{2^{\frac{1}{2}}\times 8^{\frac{1}{2}}}{4}\\=\frac{2^{\frac{1}{2}}\times 2^{\frac{3}{2}}}{2^2}\\=2^{\frac{1}{2}}+2^{\frac{3}{2}}-2=2^0 = 1\)
32.

In the diagram, |SR| = |RQ| and ∠PRQ = 58o ∠VQT = 19o, PQT, SQV and PSR are straight lines. Find ∠QPS

A. 42o

B. 39o

C. 38o

D. 30o

A

33.

The angle of depression of a point Q from a vertical tower PR, 30m high, is 40°. If the foot P of the tower is on the same horizontal level as Q, find, correct to 2 decimal places, |PQ|.

A. 35.75m

B. 25.00m

C. 22.98m

D. 19.28

Detailed Solution


\(\tan 40° = \frac{30}{|PQ|}\)
\(|PQ| = \frac{30}{\tan 40°} = \frac{30}{0.839}\)
= 35.75m
34.

The volume of a cylinder of radius 14cm is 210cm3. What is the curved surface area of the cylinder?

A. 15cm2

B. 30cm2

C. 616cm2

D. 1262cm2

Detailed Solution

\(V = \pi r^2 h\\
210 = \frac{22}{7} \times 14^2 \times h \\
h = \frac{210}{22 \times 28}\)
Curved surface area \(= 2r\pi h\\
= 2 \times \frac{22}{7} \times 14 \times \frac{210}{22 \times 26} = 30cm^2\)
35.

Simplify \(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

A. \(7\sqrt{3}\)

B. \(10\sqrt{3}\)

C. \(14\sqrt{3}\)

D. \(18\sqrt{3}\)

Detailed Solution

\(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)
= \(3(\sqrt{4 \times 3}) + 10\sqrt{3} - (\frac{6}{\sqrt{3}})(\frac{\sqrt{3}}{\sqrt{3}})\)
= \(6\sqrt{3} + 10\sqrt{3} - 2\sqrt{3}\)
= \(14\sqrt{3}\)
36.

Factorize m(2a-b)-2n(b-2a)

A. (2a-b)(2n-m)

B. (2a+b)(m-2n)

C. (2a-b)(m+2n)

D. (2a-b)(m-2n)

Detailed Solution

m(2a - b) - 2n(b - 2a)
= m(2a - b) - (-2n)(2a - b)
= m(2a - b) + 2n(2a - b)
= (m + 2n)(2a - b)
37.

If q oranges are sold for t Naira, how many oranges can be bought for p naira?

A. \(\frac{p}{2}t\)

B. \(\frac{qt}{p}\)

C. \(\frac{q}{pt}\)

D. \(\frac{pq}{t}\)

Detailed Solution

q oranges = t naira
1 naira = \(\frac{q}{t}\)
p naira = \(p(\frac{q}{t})\)
= \(\frac{pq}{t}\) oranges
38.

In the diagram, QRT is a straight line. If angle PTR = 90°, angle PRT = 60°, angle PQR = 30° and |PQ| = \(6\sqrt{3}cm\), calculate |RT|

A. 0.3cm

B. \(\frac{\sqrt{3}}{2}cm\)

C. 3cm

D. \(3\sqrt{3}cm\)

Detailed Solution

In \(\Delta\) QPT,
\(\frac{PT}{6\sqrt{3}} = \sin 30°\)
PT = \(6\sqrt{3} \times \frac{1}{2} = 3\sqrt{3} cm\)
In \(\Delta\) RPT,
\(\frac{PT}{RT} = \tan 60°\)
\(\frac{3\sqrt{3}}{RT} = \tan 60°\)
\(RT = \frac{3\sqrt{3}}{\sqrt{3}} = 3 cm\)
39.

In the diagram, calculate the value of x

A. 35o

B. 80o

C. 100o

D. 115o

Detailed Solution


x - 35° = 65° (corresponding angles)
x = 65° + 35° = 100°
40.

In the diagram, \(\bar{PS}\hspace{1mm} and \hspace{1mm}\bar{QT}\) are two altitudes of ∆PQR. Which of the following is equal to ∠RQT?

A. ∠PQT

B. ∠SRP

C. ∠PQR

D. ∠SPR

D

31.

Simplify \(\frac{2^{\frac{1}{2}}\times 8^{\frac{1}{2}}}{4}\)

A. 1

B. 2

C. 4

D. 16

Detailed Solution

\(\frac{2^{\frac{1}{2}}\times 8^{\frac{1}{2}}}{4}\\=\frac{2^{\frac{1}{2}}\times 2^{\frac{3}{2}}}{2^2}\\=2^{\frac{1}{2}}+2^{\frac{3}{2}}-2=2^0 = 1\)
32.

In the diagram, |SR| = |RQ| and ∠PRQ = 58o ∠VQT = 19o, PQT, SQV and PSR are straight lines. Find ∠QPS

A. 42o

B. 39o

C. 38o

D. 30o

A

33.

The angle of depression of a point Q from a vertical tower PR, 30m high, is 40°. If the foot P of the tower is on the same horizontal level as Q, find, correct to 2 decimal places, |PQ|.

A. 35.75m

B. 25.00m

C. 22.98m

D. 19.28

Detailed Solution


\(\tan 40° = \frac{30}{|PQ|}\)
\(|PQ| = \frac{30}{\tan 40°} = \frac{30}{0.839}\)
= 35.75m
34.

The volume of a cylinder of radius 14cm is 210cm3. What is the curved surface area of the cylinder?

A. 15cm2

B. 30cm2

C. 616cm2

D. 1262cm2

Detailed Solution

\(V = \pi r^2 h\\
210 = \frac{22}{7} \times 14^2 \times h \\
h = \frac{210}{22 \times 28}\)
Curved surface area \(= 2r\pi h\\
= 2 \times \frac{22}{7} \times 14 \times \frac{210}{22 \times 26} = 30cm^2\)
35.

Simplify \(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

A. \(7\sqrt{3}\)

B. \(10\sqrt{3}\)

C. \(14\sqrt{3}\)

D. \(18\sqrt{3}\)

Detailed Solution

\(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)
= \(3(\sqrt{4 \times 3}) + 10\sqrt{3} - (\frac{6}{\sqrt{3}})(\frac{\sqrt{3}}{\sqrt{3}})\)
= \(6\sqrt{3} + 10\sqrt{3} - 2\sqrt{3}\)
= \(14\sqrt{3}\)
36.

Factorize m(2a-b)-2n(b-2a)

A. (2a-b)(2n-m)

B. (2a+b)(m-2n)

C. (2a-b)(m+2n)

D. (2a-b)(m-2n)

Detailed Solution

m(2a - b) - 2n(b - 2a)
= m(2a - b) - (-2n)(2a - b)
= m(2a - b) + 2n(2a - b)
= (m + 2n)(2a - b)
37.

If q oranges are sold for t Naira, how many oranges can be bought for p naira?

A. \(\frac{p}{2}t\)

B. \(\frac{qt}{p}\)

C. \(\frac{q}{pt}\)

D. \(\frac{pq}{t}\)

Detailed Solution

q oranges = t naira
1 naira = \(\frac{q}{t}\)
p naira = \(p(\frac{q}{t})\)
= \(\frac{pq}{t}\) oranges
38.

In the diagram, QRT is a straight line. If angle PTR = 90°, angle PRT = 60°, angle PQR = 30° and |PQ| = \(6\sqrt{3}cm\), calculate |RT|

A. 0.3cm

B. \(\frac{\sqrt{3}}{2}cm\)

C. 3cm

D. \(3\sqrt{3}cm\)

Detailed Solution

In \(\Delta\) QPT,
\(\frac{PT}{6\sqrt{3}} = \sin 30°\)
PT = \(6\sqrt{3} \times \frac{1}{2} = 3\sqrt{3} cm\)
In \(\Delta\) RPT,
\(\frac{PT}{RT} = \tan 60°\)
\(\frac{3\sqrt{3}}{RT} = \tan 60°\)
\(RT = \frac{3\sqrt{3}}{\sqrt{3}} = 3 cm\)
39.

In the diagram, calculate the value of x

A. 35o

B. 80o

C. 100o

D. 115o

Detailed Solution


x - 35° = 65° (corresponding angles)
x = 65° + 35° = 100°
40.

In the diagram, \(\bar{PS}\hspace{1mm} and \hspace{1mm}\bar{QT}\) are two altitudes of ∆PQR. Which of the following is equal to ∠RQT?

A. ∠PQT

B. ∠SRP

C. ∠PQR

D. ∠SPR

D