Year : 
2009
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

31 - 40 of 46 Questions

# Question Ans
31.

Find the quadratic equation whose roots are -\(\frac{1}{2}\) and 3

A. 2x2 - 2x + 3 = 0

B. 2x2 - 2x - 3 = 0

C. 2x2 - 5x - 3 = 0

D. 3x2 - 5x - 3 = 0

Detailed Solution

x = \(\frac{-1}{2}\)

x = 3

2x = -1, x = 3; 2x + 1 = 0

x - 3 = 0

(2x + 1)(x - 3) = 0

2x2 - 6x + x - 3 = 0

2x2 - 5x - 3 = 0
32.

The following is the graph of a quadratic friction, find the co-ordinates of point P

A. (0, 4)

B. (4, 0)

C. (0, -4)

D. (-4, 0)

A

33.

The following is the graph of a quadratic friction, find the value of x when y = 0

A. 1, 2

B. 1, 4

C. 2, 3

D. 1, 6

Detailed Solution

when y = 0, value of x = roots of the equation

x2 - 5x + 4 = 0

x = 1, 4 (see graph)
34.

PQRS is a trapezuim. QR//PS, /PQ/ = 5cm, /OR/ = 6cm, /PS/ = 10cm and angle QPS = 42o. Calculate the perpendicular distance between the parallel sides

A. 3.35cm

B. 3.73cm

C. 4.50cm

D. 4.62cm

Detailed Solution

h = ?

\(\frac{h}{5cm}\) = sin 45o

h = 5cm x 0.6691 = 3.35cm
35.

PQRS is a trapezium. QR//PS, /PQ/ = 5cm, /OR/ = 6cm, /PS/ = 10cm and angle QPS = 42o. Calculate, correct to the nearest cm2, the area of the trapezium (h = 3.35cm2 )

A. 27cm2

B. 30cm2

C. 36cm2

D. 37cm2

Detailed Solution

Area = \(\frac{1}{2}(a + b)\)h

where a = QR = 6cm

b = PA = 10cm

Area = \(\frac{1}{2}(6 + 10)\) x 3.35cm2

= \(\frac{1}{2}(16)\) x 3.35cm2

= 26.8cm2

= 27cm2 (approx.)
36.

In the diagram, /TP/ = 12cm and it is 6cm from O, the centre of the circle, Calculate < TOP

A. 120o

B. 90o

C. 60o

D. 45o

Detailed Solution

Tan \(\theta = \frac{6}{6} = 1\)

\(\theta\) = tab - 1(1) = 45o

< top = 20

= 2 x 45o = 90o
37.

In the diagram, IG is parallel to JE, JEF = 120o and FHG = 130o, fins the angle marked t

A. 40o

B. 70o

C. 80o

D. 100o

Detailed Solution

Now, t + 60o + 50o = 180o

t = 180o - 110o

t = 70o
38.

Find the value of x in the diagram

A. 50o

B. 30o

C. 22o

D. 17o

Detailed Solution

Sum of exterior angles of a polygon = 360o

(x + 64) + 2x + (3x - 54) + 5x + 4x + 3x + (2x + 10) = 360o

20x + 20 = 360o

20x + 360 - 20 = 340o

x = \(\frac{340}{20}\)

x = 17o
39.

In the diagram, \SQ\ = 4cm, \PT\ = 7cm. /TR/ = 5cm and ST//OR. If /SP/ = xcm, find the value of x

A. 5.6

B. 6.5

C. 6.6

D. 6.8

Detailed Solution

\(\frac{/PS/}{/PQ/} = \frac{/PT/}{/PR/}\)

\(\frac{x}{4 + x} = \frac{7}{7 + 5}\)

\(\frac{x}{4 + x} = \frac{7}{12}\)

(2x = 7)(4 + x); 12x = 28 + 7x

12x - 7x = 28

5x = 28

x = \(\frac{28}{5}\)

x = 5.6
40.

Using the diagram, find the bearing of X from Y

A. 300o

B. 240o

C. 120o

D. 60o

Detailed Solution

The bearing of X from Y

= 360 - 120 = 240
31.

Find the quadratic equation whose roots are -\(\frac{1}{2}\) and 3

A. 2x2 - 2x + 3 = 0

B. 2x2 - 2x - 3 = 0

C. 2x2 - 5x - 3 = 0

D. 3x2 - 5x - 3 = 0

Detailed Solution

x = \(\frac{-1}{2}\)

x = 3

2x = -1, x = 3; 2x + 1 = 0

x - 3 = 0

(2x + 1)(x - 3) = 0

2x2 - 6x + x - 3 = 0

2x2 - 5x - 3 = 0
32.

The following is the graph of a quadratic friction, find the co-ordinates of point P

A. (0, 4)

B. (4, 0)

C. (0, -4)

D. (-4, 0)

A

33.

The following is the graph of a quadratic friction, find the value of x when y = 0

A. 1, 2

B. 1, 4

C. 2, 3

D. 1, 6

Detailed Solution

when y = 0, value of x = roots of the equation

x2 - 5x + 4 = 0

x = 1, 4 (see graph)
34.

PQRS is a trapezuim. QR//PS, /PQ/ = 5cm, /OR/ = 6cm, /PS/ = 10cm and angle QPS = 42o. Calculate the perpendicular distance between the parallel sides

A. 3.35cm

B. 3.73cm

C. 4.50cm

D. 4.62cm

Detailed Solution

h = ?

\(\frac{h}{5cm}\) = sin 45o

h = 5cm x 0.6691 = 3.35cm
35.

PQRS is a trapezium. QR//PS, /PQ/ = 5cm, /OR/ = 6cm, /PS/ = 10cm and angle QPS = 42o. Calculate, correct to the nearest cm2, the area of the trapezium (h = 3.35cm2 )

A. 27cm2

B. 30cm2

C. 36cm2

D. 37cm2

Detailed Solution

Area = \(\frac{1}{2}(a + b)\)h

where a = QR = 6cm

b = PA = 10cm

Area = \(\frac{1}{2}(6 + 10)\) x 3.35cm2

= \(\frac{1}{2}(16)\) x 3.35cm2

= 26.8cm2

= 27cm2 (approx.)
36.

In the diagram, /TP/ = 12cm and it is 6cm from O, the centre of the circle, Calculate < TOP

A. 120o

B. 90o

C. 60o

D. 45o

Detailed Solution

Tan \(\theta = \frac{6}{6} = 1\)

\(\theta\) = tab - 1(1) = 45o

< top = 20

= 2 x 45o = 90o
37.

In the diagram, IG is parallel to JE, JEF = 120o and FHG = 130o, fins the angle marked t

A. 40o

B. 70o

C. 80o

D. 100o

Detailed Solution

Now, t + 60o + 50o = 180o

t = 180o - 110o

t = 70o
38.

Find the value of x in the diagram

A. 50o

B. 30o

C. 22o

D. 17o

Detailed Solution

Sum of exterior angles of a polygon = 360o

(x + 64) + 2x + (3x - 54) + 5x + 4x + 3x + (2x + 10) = 360o

20x + 20 = 360o

20x + 360 - 20 = 340o

x = \(\frac{340}{20}\)

x = 17o
39.

In the diagram, \SQ\ = 4cm, \PT\ = 7cm. /TR/ = 5cm and ST//OR. If /SP/ = xcm, find the value of x

A. 5.6

B. 6.5

C. 6.6

D. 6.8

Detailed Solution

\(\frac{/PS/}{/PQ/} = \frac{/PT/}{/PR/}\)

\(\frac{x}{4 + x} = \frac{7}{7 + 5}\)

\(\frac{x}{4 + x} = \frac{7}{12}\)

(2x = 7)(4 + x); 12x = 28 + 7x

12x - 7x = 28

5x = 28

x = \(\frac{28}{5}\)

x = 5.6
40.

Using the diagram, find the bearing of X from Y

A. 300o

B. 240o

C. 120o

D. 60o

Detailed Solution

The bearing of X from Y

= 360 - 120 = 240