Year : 
2021
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

21 - 30 of 49 Questions

# Question Ans
21.

Find The quadratic Equation Whose Roots Are -2q And 5q.

A. 3x\(^2\) + 3qx - 10q\(^2\)

B. x\(^2\) + 3qx + 10q\(^2\)

C. x\(^2\) - 3qx + 10q\(^2\)

D. x\(^2\) - 3qx - 10q\(^2\)

Detailed Solution

x\(^2\) - (sum of roots)x + (products of roots) = 0
x\(^2\) - (-2q + 5q) + (-2q * 5q) = 0
x\(^2\) -(3q) + (-10q\(^2\)) = 0
x\(^2\) -3q - 10q\(^2\) = 0
22.

If tanθ = \(frac{3}{4}\), 180° < θ < 270°, find the value of cosθ.

A. \(\frac{4}{5}\)

B. \(\frac{3}{5}\)

C. -\(\frac{4}{5}\)

D. -\(\frac{3}{5}\)

Detailed Solution

tanθ = \(frac{3}{4}\) → tanθ = 0.75
θ = tan\(^{-1}\)[0.75] → 36.8698°
cosθ = cos[36.8698°]
→ 0.800 or \(frac{4}{5}\)
However; in the third quadrant Cosine is negative
i.e -\(frac{4}{5}\)
23.

If \(\frac{2}{x-3}\) - \(\frac{3}{x-2}\) = \(\frac{p}{(x-3)(x -2)}\), find p.

A. 5 - x

B. - (x + 5)

C. 13 - x

D. - (5x - 13)

Detailed Solution

\(\frac{2}{x-3}\) - \(\frac{3}{x-2}\)
= \(\frac{2(x -2) -3(x - 3)}{(x-3)(x -2)}\)
= \(\frac{2x -4 -3x + 9}{(x-3)(x -2)}\)
= \(\frac{5 - x}{(x-3)(x -2)}\)
24.

The diagonal of a rhombus are 12cm and 5cm. calculate its perimeter

A. 26cm

B. 24cm

C. 17cm

D. 34cm

Detailed Solution

Perimeter of a Rhombus = 4L or 2√( d1\(^2\) + d2\(^2\))
P = 2√(12\(^2\) + 5\(^2\))
P = 2√(144 + 25)
P = 2√169 = 2 * 13
P = 26cm

25.

Open photo

A. 110°

B. 130°

C. 140°

D. 180°

Detailed Solution

Isosceles Triangle. Two equal sides. Two equal angles ;
∠ X = ∠ Z
∠Y + ∠X + Z = 180 --> 40° + ∠X + ∠X = 180°
∠2X = 180° - 40° = 140°
∠X = 70°, i.e ∠X = 70 and ∠Z = 70°.
The exterior angle of triangle is the sum of two opposite internal angles
: ∠X + ∠Y = ∠XZT
=70° + 40° = 110°

26.

A solid brass cube is melted and recast as a solid cone of height h and base radius r. If the height of the cube is h, find r in terms of h.

A. r = h

B. r = √\(\frac{3h}{π}\)

C. r = πh

D. r = h √\(\frac{3}{h}\)

Detailed Solution

Volume of cube = H. H. H. = H\(^3\)
the volume of a cone is, V=\(\frac{1}{3}\)πr\(^2\)h.
Volume of cube = the volume of a cone
H\(^3\) = \(\frac{1}{3}\)πr\(^2\)h.
\(\frac{3{H}^3}{πh}\) = r\(^2\)
√\(\frac{3{H}^3}{πh}\) = r
h √\(\frac{3}{π}\) = r



27.

Which of the following is not an exterior angle of a regular polygon?

A. 66°

B. 72°

C. 24°

D. 15°

A

28.

From a point T, a man moves 12km due west and then moves 12km due south to another point Q. Calculate the bearing of T from Q.

A. 225°

B. 315°

C. 045°

D. 135°

C

29.

In the diagram O is the centre of the circle PQRS, ∠PQR = 72° and OR is parallel to PS. Find .

A. 18°

B. 108°

C. 54°

D. 36°

Detailed Solution

Angle at the centre O is twice the angle at the circumference.
i.e O = 72° * 2 = 144°
∠OPS = 180 - 144 = 36°
30.

A trapezium of parellel sides 10cm and 21cm and height 8cm is inscribed in a circle of radius 7cm. calculate the area of the region not covered by the trapezium.π =\(\frac{22}{7}\)

A. 84cm\(^2\)

B. 80cm\(^2\)

C. 30cm\(^2\)

D. 94cm\(^2\)

Detailed Solution

Area of circle = πr\(^2\) = \(\frac{22}{7}\) * 7\(^2\) = 154cm\(^2\)
Area o Trapezium = \(\frac{(a + b) h}{2}\) = \(\frac{(10 + 21)8}{2}\) = 124cm\(^2\)

Area of the region not covered = Area of (Circle - Trapezium)
= 154 - 124
= 30cm\(^2\)
21.

Find The quadratic Equation Whose Roots Are -2q And 5q.

A. 3x\(^2\) + 3qx - 10q\(^2\)

B. x\(^2\) + 3qx + 10q\(^2\)

C. x\(^2\) - 3qx + 10q\(^2\)

D. x\(^2\) - 3qx - 10q\(^2\)

Detailed Solution

x\(^2\) - (sum of roots)x + (products of roots) = 0
x\(^2\) - (-2q + 5q) + (-2q * 5q) = 0
x\(^2\) -(3q) + (-10q\(^2\)) = 0
x\(^2\) -3q - 10q\(^2\) = 0
22.

If tanθ = \(frac{3}{4}\), 180° < θ < 270°, find the value of cosθ.

A. \(\frac{4}{5}\)

B. \(\frac{3}{5}\)

C. -\(\frac{4}{5}\)

D. -\(\frac{3}{5}\)

Detailed Solution

tanθ = \(frac{3}{4}\) → tanθ = 0.75
θ = tan\(^{-1}\)[0.75] → 36.8698°
cosθ = cos[36.8698°]
→ 0.800 or \(frac{4}{5}\)
However; in the third quadrant Cosine is negative
i.e -\(frac{4}{5}\)
23.

If \(\frac{2}{x-3}\) - \(\frac{3}{x-2}\) = \(\frac{p}{(x-3)(x -2)}\), find p.

A. 5 - x

B. - (x + 5)

C. 13 - x

D. - (5x - 13)

Detailed Solution

\(\frac{2}{x-3}\) - \(\frac{3}{x-2}\)
= \(\frac{2(x -2) -3(x - 3)}{(x-3)(x -2)}\)
= \(\frac{2x -4 -3x + 9}{(x-3)(x -2)}\)
= \(\frac{5 - x}{(x-3)(x -2)}\)
24.

The diagonal of a rhombus are 12cm and 5cm. calculate its perimeter

A. 26cm

B. 24cm

C. 17cm

D. 34cm

Detailed Solution

Perimeter of a Rhombus = 4L or 2√( d1\(^2\) + d2\(^2\))
P = 2√(12\(^2\) + 5\(^2\))
P = 2√(144 + 25)
P = 2√169 = 2 * 13
P = 26cm

25.

Open photo

A. 110°

B. 130°

C. 140°

D. 180°

Detailed Solution

Isosceles Triangle. Two equal sides. Two equal angles ;
∠ X = ∠ Z
∠Y + ∠X + Z = 180 --> 40° + ∠X + ∠X = 180°
∠2X = 180° - 40° = 140°
∠X = 70°, i.e ∠X = 70 and ∠Z = 70°.
The exterior angle of triangle is the sum of two opposite internal angles
: ∠X + ∠Y = ∠XZT
=70° + 40° = 110°

26.

A solid brass cube is melted and recast as a solid cone of height h and base radius r. If the height of the cube is h, find r in terms of h.

A. r = h

B. r = √\(\frac{3h}{π}\)

C. r = πh

D. r = h √\(\frac{3}{h}\)

Detailed Solution

Volume of cube = H. H. H. = H\(^3\)
the volume of a cone is, V=\(\frac{1}{3}\)πr\(^2\)h.
Volume of cube = the volume of a cone
H\(^3\) = \(\frac{1}{3}\)πr\(^2\)h.
\(\frac{3{H}^3}{πh}\) = r\(^2\)
√\(\frac{3{H}^3}{πh}\) = r
h √\(\frac{3}{π}\) = r



27.

Which of the following is not an exterior angle of a regular polygon?

A. 66°

B. 72°

C. 24°

D. 15°

A

28.

From a point T, a man moves 12km due west and then moves 12km due south to another point Q. Calculate the bearing of T from Q.

A. 225°

B. 315°

C. 045°

D. 135°

C

29.

In the diagram O is the centre of the circle PQRS, ∠PQR = 72° and OR is parallel to PS. Find .

A. 18°

B. 108°

C. 54°

D. 36°

Detailed Solution

Angle at the centre O is twice the angle at the circumference.
i.e O = 72° * 2 = 144°
∠OPS = 180 - 144 = 36°
30.

A trapezium of parellel sides 10cm and 21cm and height 8cm is inscribed in a circle of radius 7cm. calculate the area of the region not covered by the trapezium.π =\(\frac{22}{7}\)

A. 84cm\(^2\)

B. 80cm\(^2\)

C. 30cm\(^2\)

D. 94cm\(^2\)

Detailed Solution

Area of circle = πr\(^2\) = \(\frac{22}{7}\) * 7\(^2\) = 154cm\(^2\)
Area o Trapezium = \(\frac{(a + b) h}{2}\) = \(\frac{(10 + 21)8}{2}\) = 124cm\(^2\)

Area of the region not covered = Area of (Circle - Trapezium)
= 154 - 124
= 30cm\(^2\)