Year : 
1996
Title : 
Mathematics (Core)
Exam : 
WASSCE/WAEC MAY/JUNE

Paper 1 | Objectives

1 - 10 of 49 Questions

# Question Ans
1.

The 6th term of a G.P is \(\frac{-2}{27}\) and its first term is 18. What is the common ratio?

A. -1/2

B. -1/3

C. 1/4

D. 2

E. 3

Detailed Solution

a, ar, ar\(^2\), ar\(^3\), ar\(^4\), ar\(^5\)
6th term = ar\(^5\) = \(\frac{-2}{27}\)
1st term = a = 18
=> ar\(^5\)
= 18r\(^5\) =\(\frac{-2}{27}\)
r\(^5\) = \(\frac{-2}{27 * 18}\)
→ \(\frac{-1}{27 * 9}\)

r\(^5\) = \(\frac{-1}{243}\)

r = \(^5\)√[\(\frac{-1}{243}\)]

r = \(\frac{-1}{3}\)
2.

Convert the decimal number 89 to a binary number

A. 101101

B. 111001

C. 1001001

D. 1001101

E. 1011001

Detailed Solution

89\(_{10}\) = 1011001\(_{2}\)

3.

Simplify: \((2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}\).

A. 3/16

B. 7/16

C. 1 13/24

D. 2 11/24

E. 10 2/5

Detailed Solution

\((2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}\)
= \((\frac{13}{6} - \frac{5}{3}) \div \frac{8}{3}\)
= \(\frac{3}{6} \times \frac{3}{8}\)
= \(\frac{3}{16}\)
4.

Simplify 56x\(^{-4}\) \(\div\) 14x\(^{-8}\)

A. 2x-12

B. 3x-3

C. 4x-4

D. 4x-3

E. 4x4

Detailed Solution

\(56x^{-4} \div 14x^{-8}\)
= \(4x^{- 4 - (-8)}\)
= \(4x^{4}\)
5.

Simplufy Log104 + Log1025

A. 1

B. 2

C. 3

D. 4

E. 5

Detailed Solution

Log104 + Log1025 = Log10(4 + 25)
= Log10100 = Log10102
= 2Log1010 = 2 x 1 = 2
6.

A boy measured the length and breath of a rectangular lawn as 59.6m and 40.3m respectively instead of 60m and 40m. What is the percentage error in his calculation of the perimeter of the lawn?

A. 10%

B. 1.4%

C. 7%

D. 0.2%

E. 0.1%

Detailed Solution

Length = 59.6m
Breath = 40.3m
Perimeter = (59.6m + 40.3m) x 2
= 99.9 x 2 = 199.8m
Actual measurement
Perimeter = (60 + 40) x 2 = 100 x 2 = 200m
Error = 200m - 199.8m = 0.2
Error =0.2/200 x 100/1
= 0.1%
7.

Find the 9th term of the arithmetic progression 18, 12, 6, 0, -6 .........

A. -54

B. -30

C. 30

D. 42

E. 66

Detailed Solution

18, 12, 6, 0, -6, 12, -18, 24, -30
9th term = -30
8.

Expand (2x - 5)(x - 3)

A. x2 - 1x -15

B. 2x2 - 11x + 15

C. 22 - 5x - 8

D. x2 - 5x - 15

E. 2x2 - 6x + 15

Detailed Solution

(2x - 5)(x - 3)
2x\(^2\) - 5x - 6x + 15
2x\(^2\) - 11x + 15
9.

Simplify: \(\frac{5}{x - y} - \frac{4}{y - x}\)

A.

9/x - y

B.

9/y - x

C.

1/x - y

D.

1/y - x

E.

y - 9x/x - y

Detailed Solution

\(\frac{5}{x - y} - \frac{4}{y - x}\)
= \(\frac{5(y - x) - 4(x - y)}{(x - y)(y - x)}\)
= \(\frac{5y - 5x - 4x + 4y}{(x - y)(y - x)}\)
= \(\frac{9y - 9x}{(x - y)(y - x)}\)
= \(\frac{9(y - x)}{(x - y)(y - x)}\)
= \(\frac{9}{x - y}\)
10.

If 3p - q = 6 and 2p + 3q = 4, find q

A. o

B. 1/2

C. 2/3

D. 1

E. 33/7

Detailed Solution

3p - q = 6 ........ 1
2p + 3q = 4 ....... 2
Multiply eqn 1 by 3
9p - 3q = 18 ........ 3
2p - 3q = 4 ......... 2
Add eqn3 and eqn2
11p = 22 => p = 22/11 = 2
Substitute for p =2 in eqn1
3p - q = 6
3x2 - q = 6 => 6 - q = 6 => -q = 6 - 6
q = 0
1.

The 6th term of a G.P is \(\frac{-2}{27}\) and its first term is 18. What is the common ratio?

A. -1/2

B. -1/3

C. 1/4

D. 2

E. 3

Detailed Solution

a, ar, ar\(^2\), ar\(^3\), ar\(^4\), ar\(^5\)
6th term = ar\(^5\) = \(\frac{-2}{27}\)
1st term = a = 18
=> ar\(^5\)
= 18r\(^5\) =\(\frac{-2}{27}\)
r\(^5\) = \(\frac{-2}{27 * 18}\)
→ \(\frac{-1}{27 * 9}\)

r\(^5\) = \(\frac{-1}{243}\)

r = \(^5\)√[\(\frac{-1}{243}\)]

r = \(\frac{-1}{3}\)
2.

Convert the decimal number 89 to a binary number

A. 101101

B. 111001

C. 1001001

D. 1001101

E. 1011001

Detailed Solution

89\(_{10}\) = 1011001\(_{2}\)

3.

Simplify: \((2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}\).

A. 3/16

B. 7/16

C. 1 13/24

D. 2 11/24

E. 10 2/5

Detailed Solution

\((2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}\)
= \((\frac{13}{6} - \frac{5}{3}) \div \frac{8}{3}\)
= \(\frac{3}{6} \times \frac{3}{8}\)
= \(\frac{3}{16}\)
4.

Simplify 56x\(^{-4}\) \(\div\) 14x\(^{-8}\)

A. 2x-12

B. 3x-3

C. 4x-4

D. 4x-3

E. 4x4

Detailed Solution

\(56x^{-4} \div 14x^{-8}\)
= \(4x^{- 4 - (-8)}\)
= \(4x^{4}\)
5.

Simplufy Log104 + Log1025

A. 1

B. 2

C. 3

D. 4

E. 5

Detailed Solution

Log104 + Log1025 = Log10(4 + 25)
= Log10100 = Log10102
= 2Log1010 = 2 x 1 = 2
6.

A boy measured the length and breath of a rectangular lawn as 59.6m and 40.3m respectively instead of 60m and 40m. What is the percentage error in his calculation of the perimeter of the lawn?

A. 10%

B. 1.4%

C. 7%

D. 0.2%

E. 0.1%

Detailed Solution

Length = 59.6m
Breath = 40.3m
Perimeter = (59.6m + 40.3m) x 2
= 99.9 x 2 = 199.8m
Actual measurement
Perimeter = (60 + 40) x 2 = 100 x 2 = 200m
Error = 200m - 199.8m = 0.2
Error =0.2/200 x 100/1
= 0.1%
7.

Find the 9th term of the arithmetic progression 18, 12, 6, 0, -6 .........

A. -54

B. -30

C. 30

D. 42

E. 66

Detailed Solution

18, 12, 6, 0, -6, 12, -18, 24, -30
9th term = -30
8.

Expand (2x - 5)(x - 3)

A. x2 - 1x -15

B. 2x2 - 11x + 15

C. 22 - 5x - 8

D. x2 - 5x - 15

E. 2x2 - 6x + 15

Detailed Solution

(2x - 5)(x - 3)
2x\(^2\) - 5x - 6x + 15
2x\(^2\) - 11x + 15
9.

Simplify: \(\frac{5}{x - y} - \frac{4}{y - x}\)

A.

9/x - y

B.

9/y - x

C.

1/x - y

D.

1/y - x

E.

y - 9x/x - y

Detailed Solution

\(\frac{5}{x - y} - \frac{4}{y - x}\)
= \(\frac{5(y - x) - 4(x - y)}{(x - y)(y - x)}\)
= \(\frac{5y - 5x - 4x + 4y}{(x - y)(y - x)}\)
= \(\frac{9y - 9x}{(x - y)(y - x)}\)
= \(\frac{9(y - x)}{(x - y)(y - x)}\)
= \(\frac{9}{x - y}\)
10.

If 3p - q = 6 and 2p + 3q = 4, find q

A. o

B. 1/2

C. 2/3

D. 1

E. 33/7

Detailed Solution

3p - q = 6 ........ 1
2p + 3q = 4 ....... 2
Multiply eqn 1 by 3
9p - 3q = 18 ........ 3
2p - 3q = 4 ......... 2
Add eqn3 and eqn2
11p = 22 => p = 22/11 = 2
Substitute for p =2 in eqn1
3p - q = 6
3x2 - q = 6 => 6 - q = 6 => -q = 6 - 6
q = 0