Year : 
1989
Title : 
Mathematics (Core)
Exam : 
JAMB Exam

Paper 1 | Objectives

21 - 30 of 45 Questions

# Question Ans
21.

Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)

A. -1, 2

B. 1, 2

C. 2, 1

D. 2, -1

Detailed Solution

\(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
Let \(x^{-1}\) = a and \(y^{-1}\)= b
2a - 3b = 4 .......(i)
4a + b = 1 .........(ii)
(i) x 3 = 12a + 3b = 3........(iii)
2a - 3b = 4 ...........(i)
(i) + (iii) = 14a = 7
∴ a = \(\frac{7}{14}\) = \(\frac{1}{2}\)
From (i), 3b = 2a - 4
3b = 1 - 4
3b = -3
∴ b = -1
From substituting, \(2^{-1} = x^{-1}\)
∴ x = 2
\(y^{-1} = -1, y = -1\)
22.

What value of Q will make the expression 4x2 + 5x + Q a complete square?

A. \(\frac{25}{16}\)

B. \(\frac{25}{64}\)

C. \(\frac{5}{8}\)

D. \(\frac{5}{4}\)

Detailed Solution

4x2 + 5x + Q

To make a complete square, the coefficient of x2 must be 1

= x2 + \(\frac{5x}{4}\) + \(\frac{Q}{4}\)

Then (half the coefficient of x2) should be added

i.e. x2 + \(\frac{5x}{4}\) + \(\frac{25}{64}\)

∴ \(\frac{Q}{4}\) = \(\frac{25}{64}\)

Q = \(\frac{4 \times 25}{64}\)

= \(\frac{25}{16}\)
23.

Find the range of values of values of r which satisfies the following inequality, where a, b and c are positive \(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1

A. r > \(\frac{abc}{bc + ac + ab}\)

B. r < abc

C. r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)

D. \(\frac{1}{abc}\)

Detailed Solution

\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1

r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)
24.

Express \(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) as a single algebraic fraction

A. \(\frac{-3}{(x + 1)(2 - x)}\)

B. \(\frac{3}{(x + 1)(2 - x)}\)

C. \(\frac{-1}{(x + 1)}\)

D. \(\frac{1}{(x + 1)(x - 2)}\)

Detailed Solution

\(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) = \(\frac{x - 2 - x - 1}{(x + 1)(x - 2)}\)

= \(\frac{-3}{(x + 1)(2 - x)}\)
25.

Simplify \(\frac{x(x + 1)^{\frac{1}{2}} - (x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}}\)

A. \(\frac{-1}{x + 1}\)

B. \(\frac{1}{x + 1}\)

C. \(\frac{1}{x}\)

D. \(\frac{1}{x - 1}\)

Detailed Solution

\(\frac{x}{(x + 1)}\) - \(\frac{\sqrt{(x + 1)}{\sqrt{x + 1}}\)

= \(\frac{x}{x + 1}\) - 1

\(\frac{x - x - 1}{x + 1}\) = \(\frac{-1}{x + 1}\)
26.

The sum of the first two terms of a geometric progression is x and sum of the last terms is y. If there are n terms in all, then the common ratio is

A. \(\frac{x}{y}\)

B. \(\frac{y}{x}\)

C. (\(\frac{x}{y}\))\(\frac{1}{n - 2}\)

D. (\(\frac{y}{x}\))\(\frac{1}{n - 2}\)

Detailed Solution

Sum of nth term of a G.P = Sn = \(\frac{ar^n - 1}{r - 1}\)

sum of the first two terms = \(\frac{ar^2 - 1}{r - 1}\)

x = a(r + 1)

sum of the last two terms = Sn - Sn - 2

= \(\frac{ar^n - 1}{r - 1}\) - \(\frac{(ar^{n - 1})}{r - 1}\)

= \(\frac{a(r^n - 1 - r^{n - 2} + 1)}{r - 1}\) (r2 - 1)

∴ \(\frac{ar^{n - 2}(r + 1)(r - 1)}{1}\)= arn - 2(r + 1) = y

= a(r + 1)r^n - 2

y = xrn - 2

= yrn - 2
27.

If -8, m, n, 19 are in arithmetic progression, find (m, n)

A. 1, 10

B. 2, 10

C. 3, 13

D. 4, 16

Detailed Solution

-8, m, n, 19 = m + 8

= 19 - n

m + n = 11

i.e. 1, 10
28.

A regular polygon of (2k + 1) sides has 140° as the size of each interior angle. Find k

A. 4

B. 4\(\frac{1}{2}\)

C. 8

D. 8\(\frac{1}{2}\)

Detailed Solution

A regular has all sides and all angles equal. If each interior angle is 140° each exterior angle must be

180° - 140° = 40°

The number of sides must be \(\frac{360^o}{40^o}\) = 9 sides

hence 2k + 1 = 9

2k = 9 - 1

8 = 2k

k = \(\frac{8}{2}\)

= 4
29.

PQRS is a rhombus. If PR\(^2\) + QS\(^2\) = kPQ\(^2\), determine k.

A. 1

B. 2

C. 3

D. 4

Detailed Solution

PR\(^2\) + QS\(^2\) = kPQ\(^2\)
SQ\(^2\) = SR\(^2\) + RQ\(^2\)
PR\(^2\) + SQ\(^2\) = PQ\(^2\) + SR\(^2\) + 2RQ\(^2\)
= 2PQ\(^2\) + 2RQ\(^2\)
= 4PQ\(^2\)
∴ K = 4
30.

In XYZ, y = z = 30° and XZ = 3cm. Find YZ

A. \(\frac{\sqrt{3}}{2}\) cm

B. 3\(\frac{\sqrt{3}}{2}\) cm

C. 3\(\sqrt{3}\) cm

D. 2\(\sqrt{3}\) cm

Detailed Solution

Y \(\to\) 30°

X \(\to\) 120°

Z \(\to\) 30°

\(\frac{3}{\text{sin 30}}\) = \(\frac{YZ}{\text{sin 120}}\)

YZ = \(\frac{3\times \sin 120}{\sin 30}\)

\(3 \times \frac{\sqrt{3}}{2} \times 2 = 3\sqrt{3}\)
21.

Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)

A. -1, 2

B. 1, 2

C. 2, 1

D. 2, -1

Detailed Solution

\(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
Let \(x^{-1}\) = a and \(y^{-1}\)= b
2a - 3b = 4 .......(i)
4a + b = 1 .........(ii)
(i) x 3 = 12a + 3b = 3........(iii)
2a - 3b = 4 ...........(i)
(i) + (iii) = 14a = 7
∴ a = \(\frac{7}{14}\) = \(\frac{1}{2}\)
From (i), 3b = 2a - 4
3b = 1 - 4
3b = -3
∴ b = -1
From substituting, \(2^{-1} = x^{-1}\)
∴ x = 2
\(y^{-1} = -1, y = -1\)
22.

What value of Q will make the expression 4x2 + 5x + Q a complete square?

A. \(\frac{25}{16}\)

B. \(\frac{25}{64}\)

C. \(\frac{5}{8}\)

D. \(\frac{5}{4}\)

Detailed Solution

4x2 + 5x + Q

To make a complete square, the coefficient of x2 must be 1

= x2 + \(\frac{5x}{4}\) + \(\frac{Q}{4}\)

Then (half the coefficient of x2) should be added

i.e. x2 + \(\frac{5x}{4}\) + \(\frac{25}{64}\)

∴ \(\frac{Q}{4}\) = \(\frac{25}{64}\)

Q = \(\frac{4 \times 25}{64}\)

= \(\frac{25}{16}\)
23.

Find the range of values of values of r which satisfies the following inequality, where a, b and c are positive \(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1

A. r > \(\frac{abc}{bc + ac + ab}\)

B. r < abc

C. r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)

D. \(\frac{1}{abc}\)

Detailed Solution

\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1

r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)
24.

Express \(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) as a single algebraic fraction

A. \(\frac{-3}{(x + 1)(2 - x)}\)

B. \(\frac{3}{(x + 1)(2 - x)}\)

C. \(\frac{-1}{(x + 1)}\)

D. \(\frac{1}{(x + 1)(x - 2)}\)

Detailed Solution

\(\frac{1}{x + 1}\) - \(\frac{1}{x - 2}\) = \(\frac{x - 2 - x - 1}{(x + 1)(x - 2)}\)

= \(\frac{-3}{(x + 1)(2 - x)}\)
25.

Simplify \(\frac{x(x + 1)^{\frac{1}{2}} - (x + 1)^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}}\)

A. \(\frac{-1}{x + 1}\)

B. \(\frac{1}{x + 1}\)

C. \(\frac{1}{x}\)

D. \(\frac{1}{x - 1}\)

Detailed Solution

\(\frac{x}{(x + 1)}\) - \(\frac{\sqrt{(x + 1)}{\sqrt{x + 1}}\)

= \(\frac{x}{x + 1}\) - 1

\(\frac{x - x - 1}{x + 1}\) = \(\frac{-1}{x + 1}\)
26.

The sum of the first two terms of a geometric progression is x and sum of the last terms is y. If there are n terms in all, then the common ratio is

A. \(\frac{x}{y}\)

B. \(\frac{y}{x}\)

C. (\(\frac{x}{y}\))\(\frac{1}{n - 2}\)

D. (\(\frac{y}{x}\))\(\frac{1}{n - 2}\)

Detailed Solution

Sum of nth term of a G.P = Sn = \(\frac{ar^n - 1}{r - 1}\)

sum of the first two terms = \(\frac{ar^2 - 1}{r - 1}\)

x = a(r + 1)

sum of the last two terms = Sn - Sn - 2

= \(\frac{ar^n - 1}{r - 1}\) - \(\frac{(ar^{n - 1})}{r - 1}\)

= \(\frac{a(r^n - 1 - r^{n - 2} + 1)}{r - 1}\) (r2 - 1)

∴ \(\frac{ar^{n - 2}(r + 1)(r - 1)}{1}\)= arn - 2(r + 1) = y

= a(r + 1)r^n - 2

y = xrn - 2

= yrn - 2
27.

If -8, m, n, 19 are in arithmetic progression, find (m, n)

A. 1, 10

B. 2, 10

C. 3, 13

D. 4, 16

Detailed Solution

-8, m, n, 19 = m + 8

= 19 - n

m + n = 11

i.e. 1, 10
28.

A regular polygon of (2k + 1) sides has 140° as the size of each interior angle. Find k

A. 4

B. 4\(\frac{1}{2}\)

C. 8

D. 8\(\frac{1}{2}\)

Detailed Solution

A regular has all sides and all angles equal. If each interior angle is 140° each exterior angle must be

180° - 140° = 40°

The number of sides must be \(\frac{360^o}{40^o}\) = 9 sides

hence 2k + 1 = 9

2k = 9 - 1

8 = 2k

k = \(\frac{8}{2}\)

= 4
29.

PQRS is a rhombus. If PR\(^2\) + QS\(^2\) = kPQ\(^2\), determine k.

A. 1

B. 2

C. 3

D. 4

Detailed Solution

PR\(^2\) + QS\(^2\) = kPQ\(^2\)
SQ\(^2\) = SR\(^2\) + RQ\(^2\)
PR\(^2\) + SQ\(^2\) = PQ\(^2\) + SR\(^2\) + 2RQ\(^2\)
= 2PQ\(^2\) + 2RQ\(^2\)
= 4PQ\(^2\)
∴ K = 4
30.

In XYZ, y = z = 30° and XZ = 3cm. Find YZ

A. \(\frac{\sqrt{3}}{2}\) cm

B. 3\(\frac{\sqrt{3}}{2}\) cm

C. 3\(\sqrt{3}\) cm

D. 2\(\sqrt{3}\) cm

Detailed Solution

Y \(\to\) 30°

X \(\to\) 120°

Z \(\to\) 30°

\(\frac{3}{\text{sin 30}}\) = \(\frac{YZ}{\text{sin 120}}\)

YZ = \(\frac{3\times \sin 120}{\sin 30}\)

\(3 \times \frac{\sqrt{3}}{2} \times 2 = 3\sqrt{3}\)